Assessing Algorithmic Fairness With a Multimodal Artificial Intelligence Model in Men of African and Non-African Origin on NRG Oncology Prostate Cancer Phase III Trials.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-05-01 Epub Date: 2025-05-09 DOI:10.1200/CCI-24-00284
Mack Roach, Jingbin Zhang, Osama Mohamad, Douwe van der Wal, Jeffry P Simko, Sandy DeVries, Huei-Chung Huang, Songwan Joun, Edward M Schaeffer, Todd M Morgan, Jessica Keim-Malpass, Emmalyn Chen, Rikiya Yamashita, Jedidiah M Monson, Farah Naz, James Wallace, Jean-Paul Bahary, Derek Wilke, Sonny Batra, Gregory B Biedermann, Sergio Faria, Lindsay Hwang, Howard M Sandler, Daniel E Spratt, Stephanie L Pugh, Andre Esteva, Phuoc T Tran, Felix Y Feng
{"title":"Assessing Algorithmic Fairness With a Multimodal Artificial Intelligence Model in Men of African and Non-African Origin on NRG Oncology Prostate Cancer Phase III Trials.","authors":"Mack Roach, Jingbin Zhang, Osama Mohamad, Douwe van der Wal, Jeffry P Simko, Sandy DeVries, Huei-Chung Huang, Songwan Joun, Edward M Schaeffer, Todd M Morgan, Jessica Keim-Malpass, Emmalyn Chen, Rikiya Yamashita, Jedidiah M Monson, Farah Naz, James Wallace, Jean-Paul Bahary, Derek Wilke, Sonny Batra, Gregory B Biedermann, Sergio Faria, Lindsay Hwang, Howard M Sandler, Daniel E Spratt, Stephanie L Pugh, Andre Esteva, Phuoc T Tran, Felix Y Feng","doi":"10.1200/CCI-24-00284","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Artificial intelligence (AI) tools could improve clinical decision making or exacerbate inequities because of bias. African American (AA) men reportedly have a worse prognosis for prostate cancer (PCa) and are underrepresented in the development genomic biomarkers. We assess the generalizability of tools developed using a multimodal AI (MMAI) deep learning system using digital histopathology and clinical data from NRG/Radiation Therapy Oncology Group PCa trials across racial subgroups.</p><p><strong>Methods: </strong>In total, 5,708 patients from five randomized phase III trials were included. Two MMAI algorithms were evaluated: (1) the distant metastasis (DM) MMAI model optimized to predict risk of DM, and (2) the PCa-specific mortality (PCSM) MMAI model optimized to focus on prediction death in the presence of DM (DDM). The prognostic performance of the MMAI algorithms was evaluated in AA and non-AA subgroups using time to DM (primary end point) and time to DDM (secondary end point). Exploratory end points included time to biochemical failure and overall survival with Fine-Gray or Cox proportional hazards models. Cumulative incidence estimates were computed for time-to-event end points and compared using Gray's test.</p><p><strong>Results: </strong>There were 948 (16.6%) AA patients, 4,731 non-AA patients (82.9%), and 29 (0.5%) patients with unknown or missing race status. The DM-MMAI algorithm showed a strong prognostic signal for DM in the AA (subdistribution hazard ratio [sHR], 1.2 [95% CI, 1.0 to 1.3]; <i>P</i> = .007) and non-AA subgroups (sHR, 1.4 [95% CI, 1.3 to 1.5]; <i>P</i> < .001). Similarly, the PCSM-MMAI score showed a strong prognostic signal for DDM in both AA (sHR, 1.3 [95% CI, 1.1 to 1.5]; <i>P</i> = .001) and non-AA subgroups (sHR, 1.5 [95% CI, 1.4 to 1.6]; <i>P</i> < .001), with similar distributions of risk.</p><p><strong>Conclusion: </strong>Using cooperative group data sets with a racially diverse population, the MMAI algorithm performed well across racial subgroups without evidence of algorithmic bias.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400284"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Artificial intelligence (AI) tools could improve clinical decision making or exacerbate inequities because of bias. African American (AA) men reportedly have a worse prognosis for prostate cancer (PCa) and are underrepresented in the development genomic biomarkers. We assess the generalizability of tools developed using a multimodal AI (MMAI) deep learning system using digital histopathology and clinical data from NRG/Radiation Therapy Oncology Group PCa trials across racial subgroups.

Methods: In total, 5,708 patients from five randomized phase III trials were included. Two MMAI algorithms were evaluated: (1) the distant metastasis (DM) MMAI model optimized to predict risk of DM, and (2) the PCa-specific mortality (PCSM) MMAI model optimized to focus on prediction death in the presence of DM (DDM). The prognostic performance of the MMAI algorithms was evaluated in AA and non-AA subgroups using time to DM (primary end point) and time to DDM (secondary end point). Exploratory end points included time to biochemical failure and overall survival with Fine-Gray or Cox proportional hazards models. Cumulative incidence estimates were computed for time-to-event end points and compared using Gray's test.

Results: There were 948 (16.6%) AA patients, 4,731 non-AA patients (82.9%), and 29 (0.5%) patients with unknown or missing race status. The DM-MMAI algorithm showed a strong prognostic signal for DM in the AA (subdistribution hazard ratio [sHR], 1.2 [95% CI, 1.0 to 1.3]; P = .007) and non-AA subgroups (sHR, 1.4 [95% CI, 1.3 to 1.5]; P < .001). Similarly, the PCSM-MMAI score showed a strong prognostic signal for DDM in both AA (sHR, 1.3 [95% CI, 1.1 to 1.5]; P = .001) and non-AA subgroups (sHR, 1.5 [95% CI, 1.4 to 1.6]; P < .001), with similar distributions of risk.

Conclusion: Using cooperative group data sets with a racially diverse population, the MMAI algorithm performed well across racial subgroups without evidence of algorithmic bias.

用多模态人工智能模型评估非洲和非非洲裔男性在NRG肿瘤前列腺癌III期试验中的算法公平性
目的:人工智能(AI)工具可以改善临床决策或因偏见而加剧不公平。据报道,非裔美国人(AA)男性前列腺癌(PCa)预后较差,并且在发育基因组生物标志物中代表性不足。我们使用来自NRG/放射治疗肿瘤组PCa试验的数字组织病理学和临床数据,评估了使用多模态人工智能(MMAI)深度学习系统开发的工具的泛化性。方法:共纳入5项随机III期试验的5708例患者。对两种MMAI算法进行了评估:(1)用于预测DM风险的远处转移(DM) MMAI模型,以及(2)用于预测DM (DDM)存在时死亡的pca特异性死亡率(PCSM) MMAI模型。使用到达DM(主要终点)和到达DDM(次要终点)的时间对AA和非AA亚组的MMAI算法的预后性能进行评估。探索性终点包括到生化失败的时间和使用Fine-Gray或Cox比例风险模型的总生存期。累积发生率估计计算时间到事件终点,并使用格雷检验进行比较。结果:AA患者948例(16.6%),非AA患者4731例(82.9%),种族身份未知或缺失患者29例(0.5%)。DM- mmai算法在AA中显示DM的预后信号较强(亚分布风险比[sHR], 1.2 [95% CI, 1.0 ~ 1.3];P = .007)和非aa亚组(sHR, 1.4 [95% CI, 1.3 ~ 1.5];P < 0.001)。同样,PCSM-MMAI评分在两种AA中均显示出DDM的强烈预后信号(sHR, 1.3 [95% CI, 1.1至1.5];P = .001)和非aa亚组(sHR, 1.5 [95% CI, 1.4 ~ 1.6];P < 0.001),风险分布相似。结论:使用具有不同种族人口的合作组数据集,MMAI算法在种族亚组中表现良好,没有算法偏差的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信