KEVS: enhancing segmentation of visceral adipose tissue in pre-cystectomy CT with Gaussian kernel density estimation.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Thomas Boucher, Nicholas Tetlow, Annie Fung, Amy Dewar, Pietro Arina, Sven Kerneis, John Whittle, Evangelos B Mazomenos
{"title":"KEVS: enhancing segmentation of visceral adipose tissue in pre-cystectomy CT with Gaussian kernel density estimation.","authors":"Thomas Boucher, Nicholas Tetlow, Annie Fung, Amy Dewar, Pietro Arina, Sven Kerneis, John Whittle, Evangelos B Mazomenos","doi":"10.1007/s11548-025-03380-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of postoperative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations.</p><p><strong>Methods: </strong>We introduce the kernel density-enhanced VAT segmentator (KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks.</p><p><strong>Results: </strong>We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a <math><mrow><mn>4.80</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>6.02</mn> <mo>%</mo></mrow> </math> improvement in Dice coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst.</p><p><strong>Conclusion: </strong>This research introduces KEVS, an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03380-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of postoperative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations.

Methods: We introduce the kernel density-enhanced VAT segmentator (KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks.

Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80 % and 6.02 % improvement in Dice coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst.

Conclusion: This research introduces KEVS, an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.

利用高斯核密度估计增强膀胱切除术前CT内脏脂肪组织分割。
目的:胆囊切除术患者内脏脂肪组织(VAT)的分布可以反映术后并发症的发生率。现有的使用强度阈值的计算机断层扫描(CT)增值税分割方法在观察者间可变性方面存在局限性。此外,创建真实面具的困难限制了该任务的深度学习(DL)模型的发展。本文介绍了一种在膀胱切除术前CT中进行VAT预测的新方法,该方法是全自动的,不需要对VAT面具进行训练,克服了上述局限性。方法:引入核密度增强的VAT分割器(kkevs),结合DL语义分割模型进行多体特征预测,并对预测的皮下脂肪组织进行高斯核密度估计分析,以实现对腹腔VAT的准确扫描特异性预测。唯一的DL管道,kkevs不需要真实的增值税掩码。结果:我们验证了kkevs在未见过的CT数据中准确分割腹部器官的能力,并在伦敦大学学院医院(uclb -囊肿)收集的20个膀胱切除术前CT扫描数据集中,将kkevs的VAT分割预测与现有的最先进(SOTA)方法进行了比较,并提供了专家的基础事实注释。当对uchl -囊肿进行评估时,kkevs的Dice系数比第二好的DL和基于阈值的VAT分割技术分别提高了4.80%和6.02%。结论:本研究引入了kkevs,一种自动化的SOTA方法,用于预测膀胱切除术前CT的VAT,该方法消除了观察者之间的可变性,并且完全基于不包含真实VAT掩模的开源CT数据集进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信