{"title":"Use of xylose reductase as a cofactor enhancing system for in vivo biocatalysis.","authors":"Chalermroj Sutthaphirom, Pimchai Chaiyen","doi":"10.1016/bs.mie.2025.01.022","DOIUrl":null,"url":null,"abstract":"<p><p>Cofactor imbalance is a common challenge in whole-cell bioconversion and thus limits the efficiency of biocatalysts. Various approaches have been employed to enhance cofactor availability, including specific engineering of pathways to increase intracellular levels of NAD(P)H, FMN, FAD, ATP and CoA. Recently, we have demonstrated that addition of xylose reductase (XR) in and supplying lactose to metabolically engineered cells can enhance levels of their sugar phosphates, leading to greater synthesis of NAD(P)H, FMN, FAD, ATP, and CoA in these cells, and thus a higher yield of bioconversion products. We propose that the XR/lactose system can be used as a generic tool to enhance precursor pools for cofactor synthesis for various in vivo biocatalysts. Here, we provide a protocol for the use of the XR/lactose system in fatty alcohol biosynthesis by Escherichia coli BL21(DE3). Step-by-step protocols and remarks should allow readers to adapt the use of XR/lactose for their engineered cells which should alleviate the problem of cofactor supply in whole-cell biocatalysis.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"379-391"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cofactor imbalance is a common challenge in whole-cell bioconversion and thus limits the efficiency of biocatalysts. Various approaches have been employed to enhance cofactor availability, including specific engineering of pathways to increase intracellular levels of NAD(P)H, FMN, FAD, ATP and CoA. Recently, we have demonstrated that addition of xylose reductase (XR) in and supplying lactose to metabolically engineered cells can enhance levels of their sugar phosphates, leading to greater synthesis of NAD(P)H, FMN, FAD, ATP, and CoA in these cells, and thus a higher yield of bioconversion products. We propose that the XR/lactose system can be used as a generic tool to enhance precursor pools for cofactor synthesis for various in vivo biocatalysts. Here, we provide a protocol for the use of the XR/lactose system in fatty alcohol biosynthesis by Escherichia coli BL21(DE3). Step-by-step protocols and remarks should allow readers to adapt the use of XR/lactose for their engineered cells which should alleviate the problem of cofactor supply in whole-cell biocatalysis.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.