CausalMixNet: A mixed-attention framework for causal intervention in robust medical image diagnosis

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yajie Zhang , Yu-An Huang , Yao Hu , Rui Liu , Jibin Wu , Zhi-An Huang , Kay Chen Tan
{"title":"CausalMixNet: A mixed-attention framework for causal intervention in robust medical image diagnosis","authors":"Yajie Zhang ,&nbsp;Yu-An Huang ,&nbsp;Yao Hu ,&nbsp;Rui Liu ,&nbsp;Jibin Wu ,&nbsp;Zhi-An Huang ,&nbsp;Kay Chen Tan","doi":"10.1016/j.media.2025.103581","DOIUrl":null,"url":null,"abstract":"<div><div>Confounding factors inherent in medical images can significantly impact the causal exploration capabilities of deep learning models, resulting in compromised accuracy and diminished generalization performance. In this paper, we present an innovative methodology named CausalMixNet that employs query-mixed intra-attention and key&amp;value-mixed inter-attention to probe causal relationships between input images and labels. For mitigating unobservable confounding factors, CausalMixNet integrates the non-local reasoning module (NLRM) and the key&amp;value-mixed inter-attention (KVMIA) to conduct a front-door adjustment strategy. Furthermore, CausalMixNet incorporates a patch-masked ranking module (PMRM) and query-mixed intra-attention (QMIA) to enhance mediator learning, thereby facilitating causal intervention. The patch mixing mechanism applied to query/(key&amp;value) features within QMIA and KVMIA specifically targets lesion-related feature enhancement and the inference of average causal effect inference. CausalMixNet consistently outperforms existing methods, achieving superior accuracy and F1-scores across in-domain and out-of-domain scenarios on multiple datasets, with an average improvement of 3% over the closest competitor. Demonstrating robustness against noise, gender bias, and attribute bias, CausalMixNet excels in handling unobservable confounders, maintaining stable performance even in challenging conditions.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103581"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001288","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Confounding factors inherent in medical images can significantly impact the causal exploration capabilities of deep learning models, resulting in compromised accuracy and diminished generalization performance. In this paper, we present an innovative methodology named CausalMixNet that employs query-mixed intra-attention and key&value-mixed inter-attention to probe causal relationships between input images and labels. For mitigating unobservable confounding factors, CausalMixNet integrates the non-local reasoning module (NLRM) and the key&value-mixed inter-attention (KVMIA) to conduct a front-door adjustment strategy. Furthermore, CausalMixNet incorporates a patch-masked ranking module (PMRM) and query-mixed intra-attention (QMIA) to enhance mediator learning, thereby facilitating causal intervention. The patch mixing mechanism applied to query/(key&value) features within QMIA and KVMIA specifically targets lesion-related feature enhancement and the inference of average causal effect inference. CausalMixNet consistently outperforms existing methods, achieving superior accuracy and F1-scores across in-domain and out-of-domain scenarios on multiple datasets, with an average improvement of 3% over the closest competitor. Demonstrating robustness against noise, gender bias, and attribute bias, CausalMixNet excels in handling unobservable confounders, maintaining stable performance even in challenging conditions.
CausalMixNet:一个用于稳健医学图像诊断中因果干预的混合关注框架。
医学图像中固有的混杂因素会显著影响深度学习模型的因果探索能力,导致准确性降低和泛化性能下降。在本文中,我们提出了一种名为CausalMixNet的创新方法,该方法采用查询混合的内部注意和键值混合的内部注意来探测输入图像和标签之间的因果关系。为了减轻不可观察的混杂因素,CausalMixNet集成了非局部推理模块(NLRM)和键值混合注意间(KVMIA)进行前门调整策略。此外,CausalMixNet结合了一个补丁掩码排序模块(PMRM)和查询混合注意内模块(QMIA)来增强中介学习,从而促进因果干预。QMIA和KVMIA中用于查询/(key&value)特征的patch混合机制专门针对病灶相关特征增强和平均因果效应推理。CausalMixNet始终优于现有方法,在多个数据集的域内和域外场景中实现了卓越的准确性和f1分数,比最接近的竞争对手平均提高了3%。CausalMixNet展示了对噪声、性别偏见和属性偏见的鲁棒性,在处理不可观察的混杂因素方面表现出色,即使在具有挑战性的条件下也能保持稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信