Devina J Thiono, Demetrios Samaras, Thanh T N Phan, Deanna R Zhu, Ruby P Shah, Izabella Castillo, Lawrence J Forsberg, Lakshmanane Premkumar, Ralph S Baric, Shaomin Tian, Brian Kuhlman, Aravinda M de Silva
{"title":"Stabilized dengue virus 2 envelope subunit vaccine redirects the neutralizing antibody response to all E-domains.","authors":"Devina J Thiono, Demetrios Samaras, Thanh T N Phan, Deanna R Zhu, Ruby P Shah, Izabella Castillo, Lawrence J Forsberg, Lakshmanane Premkumar, Ralph S Baric, Shaomin Tian, Brian Kuhlman, Aravinda M de Silva","doi":"10.1128/jvi.00229-25","DOIUrl":null,"url":null,"abstract":"<p><p>The four dengue virus (DENV) serotypes cause several hundred million infections annually. Several live-attenuated tetravalent dengue vaccines (LAVs) are at different stages of clinical testing and regulatory approval. A major hurdle faced by the two leading LAVs is uneven replication of vaccine serotypes stimulating a dominant response to one serotype at the expense of the other three, leading to the potential for vaccine antibody (Ab)-enhanced, more severe infections by wild-type (WT) DENV serotypes that fail to replicate in the vaccine. Protein subunit vaccines are a promising alternative since antigen dosing can be precisely controlled. However, DENV envelope (E) protein subunit vaccines have not performed well to date, possibly due to differences between the monomeric structure of soluble E and the E homodimer of the viral surface. Previously, we have combined structure-guided computational and experimental approaches to design and produce DENV2 E antigens that are stable homodimers at 37℃ and stimulate higher levels of neutralizing Abs (NAbs) than the WT E antigen in mice. The goal of this study was to evaluate if DENV2 E homodimers stimulate NAbs that target different epitopes on E protein compared to the WT E monomer. Using DENV4/2 chimeric viruses and Ab depletion methods, we mapped the WT E-elicited NAbs to simple epitopes on domain III of E. In contrast, the stable E homodimer stimulated a more complex response toward all three surface-exposed domains of the E protein. Our findings highlight the impact of DENV2 E oligomeric state on the quality and specificity of DENV NAbs and the promise of DENV E homodimers as subunit vaccines.IMPORTANCEThe ideal dengue virus (DENV) vaccine should elicit a balanced and highly protective immune response against all four DENV serotypes. Current tetravalent live-attenuated DENV vaccines have faced challenges due to uneven replication of vaccine virus strains stimulating a strong immune response to one serotype and weak responses to the other three. Protein subunit vaccines provide novel opportunities to stimulate a balanced response because dosing can be precisely controlled and independent of vaccine virus replication. Here, we compare immune responses elicited by a new DENV serotype 2 protein vaccine designed to match the structure of proteins on the viral surface. We find that proteins designed to match the viral surface stimulate better immune responses targeting multiple sites on the viral surface compared to previous protein vaccines. Our results justify further testing and development of these second-generation DENV protein subunit vaccines.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0022925"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00229-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The four dengue virus (DENV) serotypes cause several hundred million infections annually. Several live-attenuated tetravalent dengue vaccines (LAVs) are at different stages of clinical testing and regulatory approval. A major hurdle faced by the two leading LAVs is uneven replication of vaccine serotypes stimulating a dominant response to one serotype at the expense of the other three, leading to the potential for vaccine antibody (Ab)-enhanced, more severe infections by wild-type (WT) DENV serotypes that fail to replicate in the vaccine. Protein subunit vaccines are a promising alternative since antigen dosing can be precisely controlled. However, DENV envelope (E) protein subunit vaccines have not performed well to date, possibly due to differences between the monomeric structure of soluble E and the E homodimer of the viral surface. Previously, we have combined structure-guided computational and experimental approaches to design and produce DENV2 E antigens that are stable homodimers at 37℃ and stimulate higher levels of neutralizing Abs (NAbs) than the WT E antigen in mice. The goal of this study was to evaluate if DENV2 E homodimers stimulate NAbs that target different epitopes on E protein compared to the WT E monomer. Using DENV4/2 chimeric viruses and Ab depletion methods, we mapped the WT E-elicited NAbs to simple epitopes on domain III of E. In contrast, the stable E homodimer stimulated a more complex response toward all three surface-exposed domains of the E protein. Our findings highlight the impact of DENV2 E oligomeric state on the quality and specificity of DENV NAbs and the promise of DENV E homodimers as subunit vaccines.IMPORTANCEThe ideal dengue virus (DENV) vaccine should elicit a balanced and highly protective immune response against all four DENV serotypes. Current tetravalent live-attenuated DENV vaccines have faced challenges due to uneven replication of vaccine virus strains stimulating a strong immune response to one serotype and weak responses to the other three. Protein subunit vaccines provide novel opportunities to stimulate a balanced response because dosing can be precisely controlled and independent of vaccine virus replication. Here, we compare immune responses elicited by a new DENV serotype 2 protein vaccine designed to match the structure of proteins on the viral surface. We find that proteins designed to match the viral surface stimulate better immune responses targeting multiple sites on the viral surface compared to previous protein vaccines. Our results justify further testing and development of these second-generation DENV protein subunit vaccines.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.