[Real-time measurement of neuromodulators using GRAB sensors].

Rentaro Higuchi, Yasutaka Mukai, Hiroaki Norimoto
{"title":"[Real-time measurement of neuromodulators using GRAB sensors].","authors":"Rentaro Higuchi, Yasutaka Mukai, Hiroaki Norimoto","doi":"10.1254/fpj.24111","DOIUrl":null,"url":null,"abstract":"<p><p>To advance our understanding of the neuronal mechanisms underpinning animal behavior, it is important to integrate traditional electrophysiological methodologies with cutting-edge technologies capable of providing detailed insights into the dynamics of neuromodulators. However, achievement of high spatial and temporal resolution in neuromodulator measurements has presented significant challenges, particularly in the context of real-time observations within freely behaving animals. Recent innovations, exemplified by the development of genetically encoded fluorescent indicator, commonly referred to as \"GRAB sensors,\" have addressed these limitations. These tools enable the real-time, high-precision quantification of neuromodulators, representing a transformative advancement in the field. Notably, GRAB sensors have been designed to target a broad spectrum of neuromodulators, including dopamine (DA), acetylcholine (ACh), noradrenaline/norepinephrine (NE), and neuropeptides, offering unparalleled specificity, sensitivity, and temporal resolution. This review provides an overview of the features and advantages of GRAB sensors, highlights their diverse applications, and discusses key considerations pertinent to their implementation in contemporary neuroscience research.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To advance our understanding of the neuronal mechanisms underpinning animal behavior, it is important to integrate traditional electrophysiological methodologies with cutting-edge technologies capable of providing detailed insights into the dynamics of neuromodulators. However, achievement of high spatial and temporal resolution in neuromodulator measurements has presented significant challenges, particularly in the context of real-time observations within freely behaving animals. Recent innovations, exemplified by the development of genetically encoded fluorescent indicator, commonly referred to as "GRAB sensors," have addressed these limitations. These tools enable the real-time, high-precision quantification of neuromodulators, representing a transformative advancement in the field. Notably, GRAB sensors have been designed to target a broad spectrum of neuromodulators, including dopamine (DA), acetylcholine (ACh), noradrenaline/norepinephrine (NE), and neuropeptides, offering unparalleled specificity, sensitivity, and temporal resolution. This review provides an overview of the features and advantages of GRAB sensors, highlights their diverse applications, and discusses key considerations pertinent to their implementation in contemporary neuroscience research.

[利用GRAB传感器实时测量神经调节剂]。
为了促进我们对动物行为背后的神经元机制的理解,将传统的电生理学方法与能够提供神经调节剂动力学详细见解的尖端技术相结合是很重要的。然而,在神经调节剂测量中实现高空间和时间分辨率提出了重大挑战,特别是在自由行为动物的实时观察背景下。最近的创新,例如基因编码荧光指示器的发展,通常被称为“GRAB传感器”,已经解决了这些限制。这些工具实现了神经调节剂的实时、高精度量化,代表了该领域的革命性进步。值得注意的是,GRAB传感器的设计目标是广泛的神经调节剂,包括多巴胺(DA)、乙酰胆碱(ACh)、去甲肾上腺素/去甲肾上腺素(NE)和神经肽,具有无与伦比的特异性、灵敏度和时间分辨率。这篇综述概述了GRAB传感器的特点和优势,强调了它们的不同应用,并讨论了与它们在当代神经科学研究中实施相关的关键考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信