{"title":"Stable distance regression via spatial-frequency state space model for robot-assisted endomicroscopy.","authors":"Mengyi Zhou, Chi Xu, Stamatia Giannarou","doi":"10.1007/s11548-025-03353-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Probe-based confocal laser endomicroscopy (pCLE) is a noninvasive technique that enables the direct visualization of tissue at a microscopic level in real time. One of the main challenges in using pCLE is maintaining the probe within a working range of micrometer scale. As a result, the need arises for automatically regressing the probe-tissue distance to enable precise robotic tissue scanning.</p><p><strong>Methods: </strong>In this paper, we propose the spatial frequency bidirectional structured state space model (SF-BiS4D) for pCLE probe-tissue distance regression. This model advances traditional state space models by processing image sequences bidirectionally and analyzing data in both the frequency and spatial domains. Additionally, we introduce a guided trajectory planning strategy that generates pseudo-distance labels, facilitating the training of sequential models to generate smooth and stable robotic scanning trajectories. To improve inference speed, we also implement a hierarchical guided fine-tuning (GF) approach that efficiently reduces the size of the BiS4D model while maintaining performance.</p><p><strong>Results: </strong>The performance of our proposed model has been evaluated both qualitatively and quantitatively using the pCLE regression dataset (PRD). In comparison with existing state-of-the-art (SOTA) methods, our approach demonstrated superior performance in terms of accuracy and stability.</p><p><strong>Conclusion: </strong>Our proposed deep learning-based framework effectively improves distance regression for microscopic visual servoing and demonstrates its potential for integration into surgical procedures requiring precise real-time intraoperative imaging.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1167-1174"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03353-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Probe-based confocal laser endomicroscopy (pCLE) is a noninvasive technique that enables the direct visualization of tissue at a microscopic level in real time. One of the main challenges in using pCLE is maintaining the probe within a working range of micrometer scale. As a result, the need arises for automatically regressing the probe-tissue distance to enable precise robotic tissue scanning.
Methods: In this paper, we propose the spatial frequency bidirectional structured state space model (SF-BiS4D) for pCLE probe-tissue distance regression. This model advances traditional state space models by processing image sequences bidirectionally and analyzing data in both the frequency and spatial domains. Additionally, we introduce a guided trajectory planning strategy that generates pseudo-distance labels, facilitating the training of sequential models to generate smooth and stable robotic scanning trajectories. To improve inference speed, we also implement a hierarchical guided fine-tuning (GF) approach that efficiently reduces the size of the BiS4D model while maintaining performance.
Results: The performance of our proposed model has been evaluated both qualitatively and quantitatively using the pCLE regression dataset (PRD). In comparison with existing state-of-the-art (SOTA) methods, our approach demonstrated superior performance in terms of accuracy and stability.
Conclusion: Our proposed deep learning-based framework effectively improves distance regression for microscopic visual servoing and demonstrates its potential for integration into surgical procedures requiring precise real-time intraoperative imaging.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.