Christaline George, Chananwat Kortheerakul, Nitthiya Khunthong, Chitrabhanu Sharma, Danli Luo, Kok-Gan Chan, Maurycy Daroch, Kevin D Hyde, Patrick K H Lee, Kian Mau Goh, Rungaroon Waditee-Sirisattha, Stephen B Pointing
{"title":"Spatial scale modulates stochastic and deterministic influence on biogeography of photosynthetic biofilms in Southeast Asian hot springs.","authors":"Christaline George, Chananwat Kortheerakul, Nitthiya Khunthong, Chitrabhanu Sharma, Danli Luo, Kok-Gan Chan, Maurycy Daroch, Kevin D Hyde, Patrick K H Lee, Kian Mau Goh, Rungaroon Waditee-Sirisattha, Stephen B Pointing","doi":"10.1186/s40793-025-00711-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hot springs, with their well-characterized major abiotic variables and island-like habitats, are ideal systems for studying microbial biogeography. Photosynthetic biofilms are a major biological feature of hot springs but despite this large-scale studies are scarce, leaving critical questions about the drivers of spatial turnover unanswered. Here, we analysed 395 photosynthetic biofilms from neutral-alkaline hot springs (39-66 °C, pH 6.4-9.0) across a 2100 km latitudinal gradient in Southeast Asia. The Cyanobacteria-dominated communities were categorized into six biogeographic regions, each characterized by a distinct core microbiome and biotic interactions. We observed a significant decline in the explanatory power of major abiotic variables with increasing spatial scale, from 62.6% locally, 55% regionally, to 26.8% for the inter-regional meta-community. Statistical null models revealed that deterministic environmental filtering predominated at local and regional scales, whereas stochastic ecological drift was more influential at the inter-regional scale. These findings enhance our understanding of the differential contribution of ecological drivers and highlight the importance of spatial scale in shaping biogeographic distributions for microorganisms.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"50"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00711-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Hot springs, with their well-characterized major abiotic variables and island-like habitats, are ideal systems for studying microbial biogeography. Photosynthetic biofilms are a major biological feature of hot springs but despite this large-scale studies are scarce, leaving critical questions about the drivers of spatial turnover unanswered. Here, we analysed 395 photosynthetic biofilms from neutral-alkaline hot springs (39-66 °C, pH 6.4-9.0) across a 2100 km latitudinal gradient in Southeast Asia. The Cyanobacteria-dominated communities were categorized into six biogeographic regions, each characterized by a distinct core microbiome and biotic interactions. We observed a significant decline in the explanatory power of major abiotic variables with increasing spatial scale, from 62.6% locally, 55% regionally, to 26.8% for the inter-regional meta-community. Statistical null models revealed that deterministic environmental filtering predominated at local and regional scales, whereas stochastic ecological drift was more influential at the inter-regional scale. These findings enhance our understanding of the differential contribution of ecological drivers and highlight the importance of spatial scale in shaping biogeographic distributions for microorganisms.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.