Yi-Hsuan Tsai, Yi-Husan Lai, Shu-Jen Chen, Yi-Chiao Cheng, Tun-Wen Pai
{"title":"DNA Methylation Biomarker Discovery for Colorectal Cancer Diagnosis Assistance Through Integrated Analysis.","authors":"Yi-Hsuan Tsai, Yi-Husan Lai, Shu-Jen Chen, Yi-Chiao Cheng, Tun-Wen Pai","doi":"10.1177/11769351251324545","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to identify biomarkers for colorectal cancer (CRC) with representative gene functions and high classification accuracy in tissue and blood samples.</p><p><strong>Methods: </strong>We integrated CRC DNA methylation profiles from The Cancer Genome Atlas and comorbidity patterns of CRC to select biomarker candidates. We clustered these candidates near the promoter regions into multiple functional groups based on their functional annotations. To validate the selected biomarkers, we applied 3 machine learning techniques to construct models and compare their prediction performances.</p><p><strong>Results: </strong>The 10 screened genes showed significant methylation differences in both tissue and blood samples. Our test results showed that 3-gene combinations achieved outstanding classification performance. Selecting 3 representative biomarkers from different genetic functional clusters, the combination of <i>ADHFE1</i>, <i>ADAMTS5</i>, and <i>MIR129-2</i> exhibited the best performance across the 3 prediction models, achieving a Matthews correlation coefficient > .85 and an F1-score of .9.</p><p><strong>Conclusions: </strong>Using integrated DNA methylation analysis, we identified 3 CRC-related biomarkers with remarkable classification performance. These biomarkers can be used to design a practical clinical toolkit for CRC diagnosis assistance and may also serve as candidate biomarkers for further clinical experiments through liquid biopsies.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"24 ","pages":"11769351251324545"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351251324545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to identify biomarkers for colorectal cancer (CRC) with representative gene functions and high classification accuracy in tissue and blood samples.
Methods: We integrated CRC DNA methylation profiles from The Cancer Genome Atlas and comorbidity patterns of CRC to select biomarker candidates. We clustered these candidates near the promoter regions into multiple functional groups based on their functional annotations. To validate the selected biomarkers, we applied 3 machine learning techniques to construct models and compare their prediction performances.
Results: The 10 screened genes showed significant methylation differences in both tissue and blood samples. Our test results showed that 3-gene combinations achieved outstanding classification performance. Selecting 3 representative biomarkers from different genetic functional clusters, the combination of ADHFE1, ADAMTS5, and MIR129-2 exhibited the best performance across the 3 prediction models, achieving a Matthews correlation coefficient > .85 and an F1-score of .9.
Conclusions: Using integrated DNA methylation analysis, we identified 3 CRC-related biomarkers with remarkable classification performance. These biomarkers can be used to design a practical clinical toolkit for CRC diagnosis assistance and may also serve as candidate biomarkers for further clinical experiments through liquid biopsies.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.