{"title":"Characterising functional redundancy in microbiome communities via relative entropy.","authors":"Daniel Fässler, Almut Heinken, Johannes Hertel","doi":"10.1016/j.csbj.2025.03.012","DOIUrl":null,"url":null,"abstract":"<p><p>Functional redundancy has been hypothesised to be at the core of the well-evidenced relation between high ecological microbiome diversity and human health. Here, we conceptualise and operationalise functional redundancy on a single-trait level for functionally annotated microbial communities, utilising an information-theoretic approach based on relative entropy that also allows for the quantification of functional interdependency across species. Via constraint-based microbiome community modelling of a public faecal metagenomic dataset, we demonstrate that the strength of the relation between species diversity and functional redundancy is dependent on specific attributes of the function under consideration such as the rarity and the occurring functional interdependencies. Moreover, by integrating faecal metabolome data, we highlight that measures of functional redundancy have correlates in the host's metabolome. We further demonstrate that microbiomes sampled from colorectal cancer patients display higher levels of species-species functional interdependencies than those of healthy controls. By analysing microbiome community models from an inflammatory bowel disease (IBD) study, we show that although species diversity decreased in IBD subjects, functional redundancy increased for certain metabolites, notably hydrogen sulphide. This finding highlights their potential to provide valuable insights beyond species diversity. Here, we formalise the concept of functional redundancy in microbial communities and demonstrate its usefulness in real microbiome data, providing a foundation for a deeper understanding of how microbiome diversity shapes the functional capacities of a microbiome.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"1482-1497"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.03.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional redundancy has been hypothesised to be at the core of the well-evidenced relation between high ecological microbiome diversity and human health. Here, we conceptualise and operationalise functional redundancy on a single-trait level for functionally annotated microbial communities, utilising an information-theoretic approach based on relative entropy that also allows for the quantification of functional interdependency across species. Via constraint-based microbiome community modelling of a public faecal metagenomic dataset, we demonstrate that the strength of the relation between species diversity and functional redundancy is dependent on specific attributes of the function under consideration such as the rarity and the occurring functional interdependencies. Moreover, by integrating faecal metabolome data, we highlight that measures of functional redundancy have correlates in the host's metabolome. We further demonstrate that microbiomes sampled from colorectal cancer patients display higher levels of species-species functional interdependencies than those of healthy controls. By analysing microbiome community models from an inflammatory bowel disease (IBD) study, we show that although species diversity decreased in IBD subjects, functional redundancy increased for certain metabolites, notably hydrogen sulphide. This finding highlights their potential to provide valuable insights beyond species diversity. Here, we formalise the concept of functional redundancy in microbial communities and demonstrate its usefulness in real microbiome data, providing a foundation for a deeper understanding of how microbiome diversity shapes the functional capacities of a microbiome.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology