{"title":"An efficient method for early Alzheimer's disease detection based on MRI images using deep convolutional neural networks.","authors":"Samia Dardouri","doi":"10.3389/frai.2025.1563016","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive, incurable neurological disorder that leads to a gradual decline in cognitive abilities. Early detection is vital for alleviating symptoms and improving patient quality of life. With a shortage of medical experts, automated diagnostic systems are increasingly crucial in healthcare, reducing the burden on providers and enhancing diagnostic accuracy. AD remains a global health challenge, requiring effective early detection strategies to prevent its progression and facilitate timely intervention. In this study, a deep convolutional neural network (CNN) architecture is proposed for AD classification. The model, consisting of 6,026,324 parameters, uses three distinct convolutional branches with varying lengths and kernel sizes to improve feature extraction. The OASIS dataset used includes 80,000 MRI images sourced from Kaggle, categorized into four classes: non-demented (67,200 images), very mild demented (13,700 images), mild demented (5,200 images), and moderate demented (488 images). To address the dataset imbalance, a data augmentation technique was applied. The proposed model achieved a remarkable 99.68% accuracy in distinguishing between the four stages of Alzheimer's: Non-Dementia, Very Mild Dementia, Mild Dementia, and Moderate Dementia. This high accuracy highlights the model's potential for real-time analysis and early diagnosis of AD, offering a promising tool for healthcare professionals.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1563016"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1563016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a progressive, incurable neurological disorder that leads to a gradual decline in cognitive abilities. Early detection is vital for alleviating symptoms and improving patient quality of life. With a shortage of medical experts, automated diagnostic systems are increasingly crucial in healthcare, reducing the burden on providers and enhancing diagnostic accuracy. AD remains a global health challenge, requiring effective early detection strategies to prevent its progression and facilitate timely intervention. In this study, a deep convolutional neural network (CNN) architecture is proposed for AD classification. The model, consisting of 6,026,324 parameters, uses three distinct convolutional branches with varying lengths and kernel sizes to improve feature extraction. The OASIS dataset used includes 80,000 MRI images sourced from Kaggle, categorized into four classes: non-demented (67,200 images), very mild demented (13,700 images), mild demented (5,200 images), and moderate demented (488 images). To address the dataset imbalance, a data augmentation technique was applied. The proposed model achieved a remarkable 99.68% accuracy in distinguishing between the four stages of Alzheimer's: Non-Dementia, Very Mild Dementia, Mild Dementia, and Moderate Dementia. This high accuracy highlights the model's potential for real-time analysis and early diagnosis of AD, offering a promising tool for healthcare professionals.