Beyza Ecem Öz Bedir, Emine Terzi, Tuba Ozdemir Sanci, Francesco Melfi, Ecem Kaya-Sezginer, Betül Kaya, Ulviye Acar Çevik
{"title":"Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Benzothiazole-Based 1,3,4-Thiadiazole Derivatives as Potential Anticancer Agents.","authors":"Beyza Ecem Öz Bedir, Emine Terzi, Tuba Ozdemir Sanci, Francesco Melfi, Ecem Kaya-Sezginer, Betül Kaya, Ulviye Acar Çevik","doi":"10.2174/0118715206353584241018051852","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The present study aimed to design and synthesize a new series of benzothiazole analogues containing 1,3,4-thiadiazole, and assess their biological activities as potential anticancer agents.</p><p><strong>Methods: </strong>N-(5,6-dimethylbenzo[d]thiazol-2-yl)-2-((5-(substituted amino)-1,3,4-thiadiazol-2-yl)thio)acetamide derivatives (4a-4h) were synthesized via the reaction of thiadiazole derivatives (3a-3h) with 2-chloro-N-(5,6- dimethylbenzo[d]thiazol-2-yl)acetamide (1) in the presence of potassium carbonate. All the target compounds have been characterized by spectral analysis. The anticancer activities of compounds 4a-4h were tested against two human HT-1376 bladder and HT-29 colorectal carcinoma cells using the WST-1 assay. Flow cytometry was used for the determination of apoptosis, cell cycle, and caspase 3/7 activity. Moreover, wound-healing assay was utilized to evaluate cell migration. In silico physicochemical, pharmacokinetics, and toxicological properties of compound 4g were determined by pkCSM, SwissADME, and SwissTargetPrediction online web tools.</p><p><strong>Results: </strong>Among all synthesized derivatives, compound 4g (N-(5,6-dimethylbenzo[d]thiazol-2-yl)-2-((5-((3- methoxyphenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide) recorded the highest antiproliferative activity against HT-1376 cells with an IC50 as 26.51 μM at 24 h, which was less cytotoxic than cisplatin (IC50=14.85 μM). The combined treatment with compound 4g and cisplatin increased the cellular apoptosis with a higher impact compared with the cisplatin group. The higher accumulation of cells in the G2 phase, a significant increase of caspase 3/7 activity, and the inhibition of migration rate were also observed in HT-1376 following a combination of compound 4g and cisplatin treatment versus cisplatin alone, which might be involved in the apoptotic effects of compound 4g.</p><p><strong>Conclusion: </strong>The in vitro anticancer potential of compound 4g lays the foundation for future research to focus on its value as a novel and advanced cancer therapy.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206353584241018051852","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The present study aimed to design and synthesize a new series of benzothiazole analogues containing 1,3,4-thiadiazole, and assess their biological activities as potential anticancer agents.
Methods: N-(5,6-dimethylbenzo[d]thiazol-2-yl)-2-((5-(substituted amino)-1,3,4-thiadiazol-2-yl)thio)acetamide derivatives (4a-4h) were synthesized via the reaction of thiadiazole derivatives (3a-3h) with 2-chloro-N-(5,6- dimethylbenzo[d]thiazol-2-yl)acetamide (1) in the presence of potassium carbonate. All the target compounds have been characterized by spectral analysis. The anticancer activities of compounds 4a-4h were tested against two human HT-1376 bladder and HT-29 colorectal carcinoma cells using the WST-1 assay. Flow cytometry was used for the determination of apoptosis, cell cycle, and caspase 3/7 activity. Moreover, wound-healing assay was utilized to evaluate cell migration. In silico physicochemical, pharmacokinetics, and toxicological properties of compound 4g were determined by pkCSM, SwissADME, and SwissTargetPrediction online web tools.
Results: Among all synthesized derivatives, compound 4g (N-(5,6-dimethylbenzo[d]thiazol-2-yl)-2-((5-((3- methoxyphenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide) recorded the highest antiproliferative activity against HT-1376 cells with an IC50 as 26.51 μM at 24 h, which was less cytotoxic than cisplatin (IC50=14.85 μM). The combined treatment with compound 4g and cisplatin increased the cellular apoptosis with a higher impact compared with the cisplatin group. The higher accumulation of cells in the G2 phase, a significant increase of caspase 3/7 activity, and the inhibition of migration rate were also observed in HT-1376 following a combination of compound 4g and cisplatin treatment versus cisplatin alone, which might be involved in the apoptotic effects of compound 4g.
Conclusion: The in vitro anticancer potential of compound 4g lays the foundation for future research to focus on its value as a novel and advanced cancer therapy.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.