Water-Assisted Electrosynthesis of a Lithium-Aluminum Intermetallic from a Lithium Chloride-Ionic Liquid Melt.

ACS electrochemistry Pub Date : 2025-01-17 eCollection Date: 2025-05-01 DOI:10.1021/acselectrochem.4c00134
Fabrizio Bernini, Giovanni Bertoni, Adele Mucci, Andrea Marchetti, Daniele Malferrari, Gian Carlo Gazzadi, Marco Ricci, Sergio Marras, Remo Proietti Zaccaria, Enzo Rotunno, Alessio Nicolini, Nassima Yamini, Andrea Cornia, Marco Borsari, Andrea Paolella
{"title":"Water-Assisted Electrosynthesis of a Lithium-Aluminum Intermetallic from a Lithium Chloride-Ionic Liquid Melt.","authors":"Fabrizio Bernini, Giovanni Bertoni, Adele Mucci, Andrea Marchetti, Daniele Malferrari, Gian Carlo Gazzadi, Marco Ricci, Sergio Marras, Remo Proietti Zaccaria, Enzo Rotunno, Alessio Nicolini, Nassima Yamini, Andrea Cornia, Marco Borsari, Andrea Paolella","doi":"10.1021/acselectrochem.4c00134","DOIUrl":null,"url":null,"abstract":"<p><p>Although water is considered detrimental for Li-ion battery technology, a 1% w/w amount of water in a melt of LiCl in ionic liquid 1-butyl-3-methylimidazolium chloride promotes the reduction of lithium into a LiAl intermetallic along with water oxidation to O<sub>2</sub> gas. The electrodeposition of an intermetallic layer of several micrometers thickness is demonstrated by combining complementary techniques, such as galvanostatics, X-ray diffraction, electron energy-loss spectroscopy, mass spectrometry, and <sup>1</sup>H nuclear magnetic resonance. The concentration of water in the ionic liquid is found to be a critical feature, as no Li is deposited when ionic liquid is dried. Our findings highlight an innovative and simple method to produce a LiAl intermetallic by using water and lithium chloride as chemical reagents.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 5","pages":"599-606"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although water is considered detrimental for Li-ion battery technology, a 1% w/w amount of water in a melt of LiCl in ionic liquid 1-butyl-3-methylimidazolium chloride promotes the reduction of lithium into a LiAl intermetallic along with water oxidation to O2 gas. The electrodeposition of an intermetallic layer of several micrometers thickness is demonstrated by combining complementary techniques, such as galvanostatics, X-ray diffraction, electron energy-loss spectroscopy, mass spectrometry, and 1H nuclear magnetic resonance. The concentration of water in the ionic liquid is found to be a critical feature, as no Li is deposited when ionic liquid is dried. Our findings highlight an innovative and simple method to produce a LiAl intermetallic by using water and lithium chloride as chemical reagents.

水辅助电合成氯化锂离子液体熔体中的锂-铝金属间化合物。
虽然水被认为对锂离子电池技术有害,但在1-丁基-3-甲基咪唑氯离子液体中,LiCl熔体中1% w/w的水促进锂还原为LiAl金属间化合物,同时水被氧化成O2气体。通过结合互补技术,如恒流学、x射线衍射、电子能量损失谱、质谱和1H核磁共振,证明了几微米厚的金属间层的电沉积。离子液体中水的浓度被发现是一个关键特征,因为当离子液体干燥时没有锂沉积。我们的发现强调了一种创新和简单的方法,即利用水和氯化锂作为化学试剂来生产LiAl金属间化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信