Sensitivity analysis of fluorescent nuclear track detectors for fast and high-energy mono-energetic neutron dosimetry.

Medical physics Pub Date : 2025-04-20 DOI:10.1002/mp.17799
Stefan Schmidt, Jeppe B Christensen, Benjamin Lutz, Alberto Stabilini, Eduardo G Yukihara, José Vedelago
{"title":"Sensitivity analysis of fluorescent nuclear track detectors for fast and high-energy mono-energetic neutron dosimetry.","authors":"Stefan Schmidt, Jeppe B Christensen, Benjamin Lutz, Alberto Stabilini, Eduardo G Yukihara, José Vedelago","doi":"10.1002/mp.17799","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In ion beam radiotherapy, treatment radiation fields are inevitably contaminated with secondary neutrons. The energies of these neutrons can reach several hundreds of MeV. Fluorescent nuclear track detectors (FNTDs) offer a promising solution for dosimetry of fast and high-energy neutrons, particularly given their low linear energy transfer in water (LET) detection threshold.</p><p><strong>Purpose: </strong>This study presents an experimental FNTD sensitivity analysis in six fast mono-energetic neutron fields, comparing the response to poly allyl diglycol carbonate (PADC) neutron detectors, and investigates the feasibility of estimating ambient dose equivalent for neutrons, <math> <semantics><msup><mi>H</mi> <mo>∗</mo></msup> <annotation>$H^{*}$</annotation></semantics> </math> (10). Moreover, it investigates the impact of converter thickness on the detector signal for both fast and high-energy neutrons and analyzes the resulting differences in signal.</p><p><strong>Methods: </strong>FNTDs and PADCs were exposed to mono-energetic neutron fields with energies of 1.2 MeV, 2.5 MeV, 5 MeV, 6.5 MeV, 14.8 MeV, and 19 MeV and evaluated based on the track density. The <math> <semantics><msup><mi>H</mi> <mo>∗</mo></msup> <annotation>$H^{*}$</annotation></semantics> </math> (10) values for FNTDs were determined by applying energy calibration factors, <math> <semantics><mrow><mi>k</mi> <mo>(</mo> <mi>E</mi> <mo>)</mo></mrow> <annotation>$k(E)$</annotation></semantics> </math> , which were determined through Monte Carlo (MC) simulations. The benchmarked MC model is employed to investigate the sensitivity of FNTDs to high-energy neutrons up to 200 MeV for various polyethylene (PE) converter thicknesses and to analyze the detector signal, including the particle type and the recoil proton LET.</p><p><strong>Results: </strong>The sensitivity values revealed an energy dependence for FNTDs, with variations by a factor of up to 23, whereas PADC detectors showed a smaller variation, ranging from 3 to 12. Accurate <math> <semantics><msup><mi>H</mi> <mo>∗</mo></msup> <annotation>$H^{*}$</annotation></semantics> </math> (10) estimation can be achieved employing MC-derived <math> <semantics><mrow><mi>k</mi> <mo>(</mo> <mi>E</mi> <mo>)</mo></mrow> <annotation>$k(E)$</annotation></semantics> </math> factors, with deviations not exceeding <math> <semantics><mrow><mn>10</mn> <mspace></mspace> <mo>%</mo></mrow> <annotation>$10\\, \\%$</annotation></semantics> </math> . The sensitivity values increased almost continuously up to <math> <semantics><mrow><mn>200</mn> <mspace></mspace> <mi>MeV</mi></mrow> <annotation>$200 \\,\\mathrm{MeV}$</annotation></semantics> </math> for PE converter thicknesses above <math> <semantics><mrow><mn>2</mn> <mspace></mspace> <mi>mm</mi></mrow> <annotation>$2 \\,\\mathrm{mm}$</annotation></semantics> </math> , whereas plateaued for thinner PE converters above 10 MeV to 15 MeV. For neutrons above <math> <semantics><mrow><mn>20</mn> <mspace></mspace> <mi>MeV</mi></mrow> <annotation>$20 \\,\\mathrm{MeV}$</annotation></semantics> </math> , the generated fragments are deuterons, tritons and <math> <semantics> <mrow><msup><mrow></mrow> <mn>4</mn></msup> <mi>He</mi></mrow> <annotation>$^{4}{\\rm He}$</annotation></semantics> </math> , which constitutes up to <math> <semantics><mrow><mn>15</mn> <mspace></mspace> <mo>%</mo></mrow> <annotation>$15 \\,\\%$</annotation></semantics> </math> or more of the total fluence in a <math> <semantics><mrow><mn>150</mn> <mspace></mspace> <mi>MeV</mi></mrow> <annotation>$150 \\,\\mathrm{MeV}$</annotation></semantics> </math> neutron field. The recoil proton LET dropped from approximately <math> <semantics><mrow><mn>47</mn> <mspace></mspace> <mi>keV</mi> <mspace></mspace> <mi>μ</mi> <msup><mi>m</mi> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$47\\, \\mathrm{keV}\\,{\\umu}{\\mathrm{m}}^{-1}$</annotation></semantics> </math> to nearly one order of magnitude less between 1.2 MeV and 19 MeV, with an average LET of approximately <math> <semantics><mrow><mn>2</mn> <mspace></mspace> <mi>keV</mi> <mspace></mspace> <mi>μ</mi> <msup><mi>m</mi> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$2\\, \\mathrm{keV}\\,{\\umu}{\\mathrm{m}}^{-1}$</annotation></semantics> </math> at <math> <semantics><mrow><mn>150</mn> <mspace></mspace> <mi>MeV</mi></mrow> <annotation>$150 \\,\\mathrm{MeV}$</annotation></semantics> </math> .</p><p><strong>Conclusions: </strong>This study compares FNTD and PADC detector sensitivities, demonstrating a notable energy and converter thickness dependence for FNTDs, which is essential for precise dosimetry. Accurate <math> <semantics><msup><mi>H</mi> <mo>∗</mo></msup> <annotation>$H^{*}$</annotation></semantics> </math> (10) values for fast mono-energetic neutrons up to <math> <semantics><mrow><mn>19</mn> <mspace></mspace> <mi>MeV</mi></mrow> <annotation>$19 \\,\\mathrm{MeV}$</annotation></semantics> </math> were determined utilizing MC simulations. A benchmarked MC model for fast neutrons was then applied to analyze the FNTD signal for high-energy neutrons.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In ion beam radiotherapy, treatment radiation fields are inevitably contaminated with secondary neutrons. The energies of these neutrons can reach several hundreds of MeV. Fluorescent nuclear track detectors (FNTDs) offer a promising solution for dosimetry of fast and high-energy neutrons, particularly given their low linear energy transfer in water (LET) detection threshold.

Purpose: This study presents an experimental FNTD sensitivity analysis in six fast mono-energetic neutron fields, comparing the response to poly allyl diglycol carbonate (PADC) neutron detectors, and investigates the feasibility of estimating ambient dose equivalent for neutrons, H $H^{*}$ (10). Moreover, it investigates the impact of converter thickness on the detector signal for both fast and high-energy neutrons and analyzes the resulting differences in signal.

Methods: FNTDs and PADCs were exposed to mono-energetic neutron fields with energies of 1.2 MeV, 2.5 MeV, 5 MeV, 6.5 MeV, 14.8 MeV, and 19 MeV and evaluated based on the track density. The H $H^{*}$ (10) values for FNTDs were determined by applying energy calibration factors, k ( E ) $k(E)$ , which were determined through Monte Carlo (MC) simulations. The benchmarked MC model is employed to investigate the sensitivity of FNTDs to high-energy neutrons up to 200 MeV for various polyethylene (PE) converter thicknesses and to analyze the detector signal, including the particle type and the recoil proton LET.

Results: The sensitivity values revealed an energy dependence for FNTDs, with variations by a factor of up to 23, whereas PADC detectors showed a smaller variation, ranging from 3 to 12. Accurate H $H^{*}$ (10) estimation can be achieved employing MC-derived k ( E ) $k(E)$ factors, with deviations not exceeding 10 % $10\, \%$ . The sensitivity values increased almost continuously up to 200 MeV $200 \,\mathrm{MeV}$ for PE converter thicknesses above 2 mm $2 \,\mathrm{mm}$ , whereas plateaued for thinner PE converters above 10 MeV to 15 MeV. For neutrons above 20 MeV $20 \,\mathrm{MeV}$ , the generated fragments are deuterons, tritons and 4 He $^{4}{\rm He}$ , which constitutes up to 15 % $15 \,\%$ or more of the total fluence in a 150 MeV $150 \,\mathrm{MeV}$ neutron field. The recoil proton LET dropped from approximately 47 keV μ m - 1 $47\, \mathrm{keV}\,{\umu}{\mathrm{m}}^{-1}$ to nearly one order of magnitude less between 1.2 MeV and 19 MeV, with an average LET of approximately 2 keV μ m - 1 $2\, \mathrm{keV}\,{\umu}{\mathrm{m}}^{-1}$ at 150 MeV $150 \,\mathrm{MeV}$ .

Conclusions: This study compares FNTD and PADC detector sensitivities, demonstrating a notable energy and converter thickness dependence for FNTDs, which is essential for precise dosimetry. Accurate H $H^{*}$ (10) values for fast mono-energetic neutrons up to 19 MeV $19 \,\mathrm{MeV}$ were determined utilizing MC simulations. A benchmarked MC model for fast neutrons was then applied to analyze the FNTD signal for high-energy neutrons.

荧光核径迹检测器用于快速和高能单能中子剂量测定的灵敏度分析。
背景:在离子束放射治疗中,治疗辐射场不可避免地受到二次中子的污染。这些中子的能量可以达到几百兆电子伏特。荧光核径迹检测器(FNTDs)为快速和高能中子的剂量测定提供了一种很有前途的解决方案,特别是考虑到它们在水中的线性能量转移(LET)检测阈值较低。目的:本文对6个快速单能中子场的FNTD灵敏度进行了实验分析,比较了PADC(聚烯丙基二甘醇碳酸酯)中子探测器的响应,并探讨了估算中子环境剂量当量H∗$H^{*}$(10)的可行性。此外,本文还研究了转换器厚度对快中子和高能中子探测器信号的影响,并分析了由此产生的信号差异。方法:将FNTDs和PADCs分别暴露于能量分别为1.2 MeV、2.5 MeV、5 MeV、6.5 MeV、14.8 MeV和19 MeV的单能中子场中,并根据径迹密度进行评价。FNTDs的H∗$H^{*}$(10)值由能量校正因子k(E)$ k(E)$确定,该因子由Monte Carlo (MC)模拟确定。采用基准MC模型研究了不同聚乙烯(PE)转炉厚度下FNTDs对高达200 MeV的高能中子的敏感性,并分析了探测器信号,包括粒子类型和反冲质子LET。结果:灵敏度值揭示了FNTDs的能量依赖性,其变化因子高达23,而PADC探测器的变化较小,范围为3至12。使用mc衍生的k(E)$ k(E)$因子可以获得精确的H∗$H^{*}$(10)估计,偏差不超过10% $10\,\%$。对于厚度大于2 mm的PE转换器,灵敏度值几乎连续增加到200 MeV,而对于厚度大于10 MeV至15 MeV的较薄PE转换器,灵敏度值趋于稳定。对于20 MeV以上的中子,产生的碎片是氘核、三合子和4he ^{4}{\rm He}$,它们在150 MeV的中子场中占总能量的15% $15 \,\%$或更多。反作用质子的LET从大约47 keV μ m -1 $47\, \ mathm {keV}\,{\umu}{\ mathm {m}}^{-1}$下降到1.2 MeV和19 MeV之间的近一个数量级,在150 MeV $150 \,\ mathm {MeV}$时的平均LET约为2 keV μ m -1 $2\, \ mathm {keV}\,{\umu}{\ mathm {m}}^{-1}$。本研究比较了FNTD和PADC探测器的灵敏度,证明了FNTD对能量和转换器厚度的显著依赖,这对于精确剂量测定至关重要。利用MC模拟确定了高达19 MeV的快速单能中子的精确H∗$H^{*}$(10)值$19 \,\ mathm {MeV}$。然后应用快中子基准MC模型分析了高能中子的FNTD信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信