TrustME: A Context-Aware Explainability Model to Promote User Trust in Guidance.

IF 6.5
Maath Musleh, Renata G Raidou, Davide Ceneda
{"title":"TrustME: A Context-Aware Explainability Model to Promote User Trust in Guidance.","authors":"Maath Musleh, Renata G Raidou, Davide Ceneda","doi":"10.1109/TVCG.2025.3562929","DOIUrl":null,"url":null,"abstract":"<p><p>Guidance-enhanced approaches are used to support users in making sense of their data and overcoming challenging analytical scenarios. While recent literature underscores the value of guidance, a lack of clear explanations to motivate system interventions may still negatively impact guidance effectiveness. Hence, guidance-enhanced VA approaches require meticulous design, demanding contextual adjustments for developing appropriate explanations. Our paper discusses the concept of explainable guidance and how it impacts the user-system relationship-specifically, a user's trust in guidance within the VA process. We subsequently propose a model that supports the design of explainability strategies for guidance in VA. The model builds upon flourishing literature in explainable AI, available guidelines for developing effective guidance in VA systems, and accrued knowledge on user-system trust dynamics. Our model responds to challenges concerning guidance adoption and context-effectiveness by fostering trust through appropriately designed explanations. To demonstrate the model's value, we employ it in designing explanations within two existing VA scenarios. We also describe a design walk-through with a guidance expert to showcase how our model supports designers in clarifying the rationale behind system interventions and designing explainable guidance.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3562929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Guidance-enhanced approaches are used to support users in making sense of their data and overcoming challenging analytical scenarios. While recent literature underscores the value of guidance, a lack of clear explanations to motivate system interventions may still negatively impact guidance effectiveness. Hence, guidance-enhanced VA approaches require meticulous design, demanding contextual adjustments for developing appropriate explanations. Our paper discusses the concept of explainable guidance and how it impacts the user-system relationship-specifically, a user's trust in guidance within the VA process. We subsequently propose a model that supports the design of explainability strategies for guidance in VA. The model builds upon flourishing literature in explainable AI, available guidelines for developing effective guidance in VA systems, and accrued knowledge on user-system trust dynamics. Our model responds to challenges concerning guidance adoption and context-effectiveness by fostering trust through appropriately designed explanations. To demonstrate the model's value, we employ it in designing explanations within two existing VA scenarios. We also describe a design walk-through with a guidance expert to showcase how our model supports designers in clarifying the rationale behind system interventions and designing explainable guidance.

TrustME:一个情境感知的可解释性模型,以促进用户在指导中的信任。
指南增强方法用于支持用户理解其数据并克服具有挑战性的分析场景。虽然最近的文献强调了指导的价值,但缺乏明确的解释来激励系统干预可能仍然会对指导的有效性产生负面影响。因此,指导增强的VA方法需要细致的设计,需要对上下文进行调整,以发展适当的解释。我们的论文讨论了可解释指导的概念,以及它如何影响用户-系统关系,特别是用户对VA过程中指导的信任。随后,我们提出了一个模型,该模型支持可解释人工智能指导策略的设计。该模型建立在可解释人工智能的大量文献、在可解释人工智能系统中开发有效指导的可用指南以及关于用户-系统信任动态的累积知识的基础上。我们的模型通过适当设计的解释来培养信任,从而应对有关指导采用和情境有效性的挑战。为了证明该模型的价值,我们将其用于在两个现有的VA场景中设计解释。我们还描述了与指导专家一起进行的设计演练,以展示我们的模型如何支持设计师澄清系统干预背后的基本原理并设计可解释的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信