Mahan Dastgiri, Javier Cabrera, Yajie Duan, Davit Sargsyan, Craig W Gambogi, Abraham Adokwei, Rebecca Mary Peter, PoChung Chou, Ge Cheng, Chun-Pang Lin, Jocelyn Sendecki, Helena Geys, Kanaka Tatikola, Ah-Ng Kong
{"title":"Novel machine learning approach to differential cell flow cytometry analysis based on projection pursuit.","authors":"Mahan Dastgiri, Javier Cabrera, Yajie Duan, Davit Sargsyan, Craig W Gambogi, Abraham Adokwei, Rebecca Mary Peter, PoChung Chou, Ge Cheng, Chun-Pang Lin, Jocelyn Sendecki, Helena Geys, Kanaka Tatikola, Ah-Ng Kong","doi":"10.1080/10543406.2025.2490725","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces the novel methodology of differential projection pursuit and its applications to the analysis of large datasets. The method was applied to a cell flow cytometry dataset as an alternative approach to analyze this type of data. Multicolor cell flow cytometry is a well-established laboratory technique to identify cell subpopulations by measuring their physical and biochemical characteristics. Differential projection pursuit helps to find regions with maximal differences between two or more treatments or distributions. Data analysis in flow cytometry relies on gating, the process of manually selecting successive subpopulations of cells using two-dimensional plots. Plotting the variables only two at a time could mask the hidden structure present in the data, and manual selection makes the analysis inconsistent and arbitrary. The new methodology could automate flow cytometry analysis by utilizing the combination of projection pursuit, data nuggets, and factor analysis. When applied to flow cytometry data, differential projection pursuit allows researchers to quickly identify differences in cell populations exposed to different experimental conditions. This methodology could create a platform to explore differences in large datasets and improve the cell flow cytometry analysis clarity and reproducibility by considering the data in its true dimensional space and through automation, respectively.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-13"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2490725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the novel methodology of differential projection pursuit and its applications to the analysis of large datasets. The method was applied to a cell flow cytometry dataset as an alternative approach to analyze this type of data. Multicolor cell flow cytometry is a well-established laboratory technique to identify cell subpopulations by measuring their physical and biochemical characteristics. Differential projection pursuit helps to find regions with maximal differences between two or more treatments or distributions. Data analysis in flow cytometry relies on gating, the process of manually selecting successive subpopulations of cells using two-dimensional plots. Plotting the variables only two at a time could mask the hidden structure present in the data, and manual selection makes the analysis inconsistent and arbitrary. The new methodology could automate flow cytometry analysis by utilizing the combination of projection pursuit, data nuggets, and factor analysis. When applied to flow cytometry data, differential projection pursuit allows researchers to quickly identify differences in cell populations exposed to different experimental conditions. This methodology could create a platform to explore differences in large datasets and improve the cell flow cytometry analysis clarity and reproducibility by considering the data in its true dimensional space and through automation, respectively.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.