Applications of Nanobodies in Biological Imaging.

IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Liangjü Sheng, Kai Sheng, Peng Lü
{"title":"Applications of Nanobodies in Biological Imaging.","authors":"Liangjü Sheng, Kai Sheng, Peng Lü","doi":"10.1089/cbr.2025.0005","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Nanobodies (Nbs), derived from Camelidae heavy-chain antibodies, are single-domain fragments (15 kDa) with high antigen-binding specificity, enhanced tissue penetration, and low immunogenicity. These attributes address limitations of conventional antibodies, positioning Nbs as pivotal tools for targeted molecular imaging in diagnostics and therapeutics. <b><i>Methods:</i></b> Nbs are screened through phage/mRNA display or single B-cell sequencing, expressed in prokaryotic or yeast systems, and humanized via CDR grafting. Functional probes are engineered by conjugating Nbs with radionuclides (<sup>68</sup>Ga, <sup>99</sup>mTc) or fluorophores (IRDye 800CW) for compatibility with PET, SPECT, NIRF, and ultrasound modalities. <b><i>Results:</i></b> Clinical trials validated Nb efficacy: <sup>68</sup>Ga-HER2-Nb PET/CT achieved tumor-specific uptake in HER2+ cancers (NCT04467515), while 99mTc-PD-L1-Nb enabled quantitative SPECT-guided immunotherapy in NSCLC. NIRF-Nb conjugates (e.g., 11A4-800CW) enhanced intraoperative tumor delineation in murine models. Dual-targeted ultrasound microbubbles demonstrated multi-biomarker imaging via acoustic pressure modulation. <b><i>Conclusion:</i></b> Nbs advance biological imaging through superior resolution and rapid pharmacokinetics. Challenges persist in optimizing probe stability, minimizing immunogenicity, and scaling production. Future priorities include integrating multi-modal platforms, expanding applications to neurodegenerative disorders, and refining personalized diagnostic paradigms, underscoring their transformative potential in precision medicine.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2025.0005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nanobodies (Nbs), derived from Camelidae heavy-chain antibodies, are single-domain fragments (15 kDa) with high antigen-binding specificity, enhanced tissue penetration, and low immunogenicity. These attributes address limitations of conventional antibodies, positioning Nbs as pivotal tools for targeted molecular imaging in diagnostics and therapeutics. Methods: Nbs are screened through phage/mRNA display or single B-cell sequencing, expressed in prokaryotic or yeast systems, and humanized via CDR grafting. Functional probes are engineered by conjugating Nbs with radionuclides (68Ga, 99mTc) or fluorophores (IRDye 800CW) for compatibility with PET, SPECT, NIRF, and ultrasound modalities. Results: Clinical trials validated Nb efficacy: 68Ga-HER2-Nb PET/CT achieved tumor-specific uptake in HER2+ cancers (NCT04467515), while 99mTc-PD-L1-Nb enabled quantitative SPECT-guided immunotherapy in NSCLC. NIRF-Nb conjugates (e.g., 11A4-800CW) enhanced intraoperative tumor delineation in murine models. Dual-targeted ultrasound microbubbles demonstrated multi-biomarker imaging via acoustic pressure modulation. Conclusion: Nbs advance biological imaging through superior resolution and rapid pharmacokinetics. Challenges persist in optimizing probe stability, minimizing immunogenicity, and scaling production. Future priorities include integrating multi-modal platforms, expanding applications to neurodegenerative disorders, and refining personalized diagnostic paradigms, underscoring their transformative potential in precision medicine.

纳米体在生物成像中的应用。
背景:纳米体(Nbs)来源于Camelidae重链抗体,是一种单域片段(15 kDa),具有高抗原结合特异性,增强组织穿透性和低免疫原性。这些特性解决了传统抗体的局限性,将Nbs定位为诊断和治疗中靶向分子成像的关键工具。方法:通过噬菌体/mRNA展示或单b细胞测序筛选Nbs,在原核或酵母系统中表达,并通过CDR嫁接进行人源化。功能探针通过将Nbs与放射性核素(68Ga, 99mTc)或荧光团(IRDye 800CW)偶联来设计,以与PET, SPECT, NIRF和超声模式兼容。结果:临床试验验证了Nb的有效性:68Ga-HER2-Nb PET/CT在HER2+癌症(NCT04467515)中实现了肿瘤特异性摄取,而99mTc-PD-L1-Nb在非小细胞肺癌中实现了定量spect引导的免疫治疗。nif - nb偶联物(如11A4-800CW)增强了小鼠模型术中肿瘤的描绘。双目标超声微泡通过声压调制显示了多生物标志物成像。结论:Nbs具有较高的分辨率和快速的药代动力学,促进了生物成像的发展。在优化探针稳定性、最小化免疫原性和规模化生产方面仍然存在挑战。未来的优先事项包括整合多模式平台,扩大神经退行性疾病的应用,完善个性化诊断范例,强调它们在精准医学中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
87
审稿时长
3 months
期刊介绍: Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies. The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信