AlphaFold2 SLiM screen for LC3-LIR interactions in autophagy.

Jan Felix Maximilian Stuke, Gerhard Hummer
{"title":"AlphaFold2 SLiM screen for LC3-LIR interactions in autophagy.","authors":"Jan Felix Maximilian Stuke, Gerhard Hummer","doi":"10.1080/15548627.2025.2493999","DOIUrl":null,"url":null,"abstract":"<p><p>In selective macroautophagy/autophagy, cargo recruitment is mediated by MAP1LC3/LC3-interacting regions (LIRs)/Atg8-family interacting motifs (AIMs) in the cargo or cargo receptor proteins. The binding of these motifs to LC3/Atg8 proteins at the phagophore membrane is often modulated by post-translational modifications, especially phosphorylation. As a challenge for computational LIR predictions, sequences may contain the short canonical (W/F/Y)XX(L/I/V) motif without being functional. Conversely, LIRs may be formed by non-canonical but functional sequence motifs. AlphaFold2 has proven to be useful for LIR predictions, even if some LIRs are missed and proteins with thousands of residues reach the limits of computational feasibility. We present a fragment-based approach to address these limitations. We find that fragment length and phosphomimetic mutations modulate the interactions predicted by AlphaFold2. Systematic fragment screening for a range of target proteins yields structural models for interactions that AlphaFold2 and AlphaFold3 fail to predict for full-length targets. We provide guidance on fragment choice, sequence tuning, LC3 isoform effects, and scoring for optimal LIR screens. Finally, we also test the transferability of this general framework to SUMO-SIM interactions, another type of protein-protein interaction involving short linear motifs (SLiMs).<b>Abbreviations</b>: 2-HP-LIR: ncLIR binding either or both HPs with non-canonical residues; AIM: Atg8-family interacting motif; ap. LIR: antiparallel LIR; <i>A.t</i>.; <i>Arabidopsis thaliana</i>; AT5G06830/C53 (<i>A.t</i>.): CDK5RAP3-like protein; Atg8/ATG8: autophagy related 8, in yeast and plants, respectively; ATG8CL: ATG8C-like of <i>Solanum tuberosum</i> (potato); ATG8E: ATG8e of <i>A.t</i>.; Av. num. of contacts: average number of heavy atom contacts; BCL2: BCL2 apoptosis regulator; BNIP3: BCL2 interacting protein 3; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CALR: calreticulin; can. LIR: canonical LIR; CDF: cumulative distribution function; CDK5RAP3/C53 (<i>H.s</i>.): CDK5 regulatory subunit associated protein 3; [DE]W[DE]-LIR: TRIM5-like ncLIR; DSK2A: ubiquitin domain-containing protein DSK2a; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HP0/1/2: hydrophobic pocket 0/1/2; HP0-LIR: ncLIR engaging HP0; <i>H.s</i>.; <i>Homo sapiens</i>; lcLIR: low-confidence LIR (ncLIR not similar to previously characterized ncLIRs); LDS: LIR-docking site; LIR: LC3-interacting region; LO score: length-weighted fraction of occurrence score; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MEFV/pyrin: MEFV innate immunity regulator, pyrin; minPAE: minimum PAE; MSA: multiple sequence alignment; ncLIR: non-canonical LIR; NPC: nuclear pore complex; Nup159: nucleoporin 159; NUP214: nucleoporin 214; OPTN: optineurin; other@LDS: other interaction proximal to the LIR-docking site; PAE: predicted aligned error; PDCD6IP: programmed cell death 6 interacting protein; PDF: probability distribution function; pLDDT: predicted local-distance difference test; PLEKHM1: pleckstrin homology and RUN domain containing M1; PTM: post-translational modification; sAIM: shuffled AIM (ncLIR with shuffled motif); seq.: sequence; SIM: SUMO-interacting motif; SLiM: short linear motif; SMN1/SMN: survival of motor neuron 1, telomeric; ST: phosphomimetic; STBD1: starch binding domain 1; STK3: serine/threonine kinase 3; SUMO: small ubiquitin like modifier; TBC1D2/TBC1D2A: TBC1 domain family member 2; TEX264: testis expressed 264, ER-phagy receptor; TRIM5/TRIM5α: tripartite motif-containing protein 5; UDS: UIM-docking site; UIM: ubiquitin-interacting motif; UIMC1/RAP80: ubiquitin interaction motif containing 1; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2493999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In selective macroautophagy/autophagy, cargo recruitment is mediated by MAP1LC3/LC3-interacting regions (LIRs)/Atg8-family interacting motifs (AIMs) in the cargo or cargo receptor proteins. The binding of these motifs to LC3/Atg8 proteins at the phagophore membrane is often modulated by post-translational modifications, especially phosphorylation. As a challenge for computational LIR predictions, sequences may contain the short canonical (W/F/Y)XX(L/I/V) motif without being functional. Conversely, LIRs may be formed by non-canonical but functional sequence motifs. AlphaFold2 has proven to be useful for LIR predictions, even if some LIRs are missed and proteins with thousands of residues reach the limits of computational feasibility. We present a fragment-based approach to address these limitations. We find that fragment length and phosphomimetic mutations modulate the interactions predicted by AlphaFold2. Systematic fragment screening for a range of target proteins yields structural models for interactions that AlphaFold2 and AlphaFold3 fail to predict for full-length targets. We provide guidance on fragment choice, sequence tuning, LC3 isoform effects, and scoring for optimal LIR screens. Finally, we also test the transferability of this general framework to SUMO-SIM interactions, another type of protein-protein interaction involving short linear motifs (SLiMs).Abbreviations: 2-HP-LIR: ncLIR binding either or both HPs with non-canonical residues; AIM: Atg8-family interacting motif; ap. LIR: antiparallel LIR; A.t.; Arabidopsis thaliana; AT5G06830/C53 (A.t.): CDK5RAP3-like protein; Atg8/ATG8: autophagy related 8, in yeast and plants, respectively; ATG8CL: ATG8C-like of Solanum tuberosum (potato); ATG8E: ATG8e of A.t.; Av. num. of contacts: average number of heavy atom contacts; BCL2: BCL2 apoptosis regulator; BNIP3: BCL2 interacting protein 3; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CALR: calreticulin; can. LIR: canonical LIR; CDF: cumulative distribution function; CDK5RAP3/C53 (H.s.): CDK5 regulatory subunit associated protein 3; [DE]W[DE]-LIR: TRIM5-like ncLIR; DSK2A: ubiquitin domain-containing protein DSK2a; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HP0/1/2: hydrophobic pocket 0/1/2; HP0-LIR: ncLIR engaging HP0; H.s.; Homo sapiens; lcLIR: low-confidence LIR (ncLIR not similar to previously characterized ncLIRs); LDS: LIR-docking site; LIR: LC3-interacting region; LO score: length-weighted fraction of occurrence score; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MEFV/pyrin: MEFV innate immunity regulator, pyrin; minPAE: minimum PAE; MSA: multiple sequence alignment; ncLIR: non-canonical LIR; NPC: nuclear pore complex; Nup159: nucleoporin 159; NUP214: nucleoporin 214; OPTN: optineurin; other@LDS: other interaction proximal to the LIR-docking site; PAE: predicted aligned error; PDCD6IP: programmed cell death 6 interacting protein; PDF: probability distribution function; pLDDT: predicted local-distance difference test; PLEKHM1: pleckstrin homology and RUN domain containing M1; PTM: post-translational modification; sAIM: shuffled AIM (ncLIR with shuffled motif); seq.: sequence; SIM: SUMO-interacting motif; SLiM: short linear motif; SMN1/SMN: survival of motor neuron 1, telomeric; ST: phosphomimetic; STBD1: starch binding domain 1; STK3: serine/threonine kinase 3; SUMO: small ubiquitin like modifier; TBC1D2/TBC1D2A: TBC1 domain family member 2; TEX264: testis expressed 264, ER-phagy receptor; TRIM5/TRIM5α: tripartite motif-containing protein 5; UDS: UIM-docking site; UIM: ubiquitin-interacting motif; UIMC1/RAP80: ubiquitin interaction motif containing 1; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; WT: wild type.

自噬中LC3-LIR相互作用的纤薄屏幕。
在选择性巨噬/自噬中,货物招募是由货物或货物受体蛋白中的MAP1LC3/ lc3相互作用区域(LIRs)/ atg8家族相互作用基序(AIMs)介导的。这些基序与吞噬体膜上LC3/ at8蛋白的结合通常通过翻译后修饰,特别是磷酸化来调节。作为计算LIR预测的挑战,序列可能包含短规范(W/F/Y)XX(L/I/V)基序而不具有功能。相反,lir可能由非规范但功能的序列基序形成。AlphaFold2已被证明对LIR预测是有用的,即使一些LIR被遗漏,并且具有数千个残基的蛋白质达到了计算可行性的极限。我们提出了一种基于片段的方法来解决这些限制。我们发现片段长度和拟磷突变调节了AlphaFold2预测的相互作用。对一系列靶蛋白的系统片段筛选产生了相互作用的结构模型,而AlphaFold2和AlphaFold3无法预测全长靶标。我们为片段选择、序列调整、LC3异构体效应和最佳LIR屏幕评分提供指导。最后,我们还测试了该一般框架对SUMO-SIM相互作用的可转移性,SUMO-SIM相互作用是另一种涉及短线性基序(slms)的蛋白质-蛋白质相互作用。缩写:2-HP-LIR: ncLIR结合非典型残基的hp或hp;目的:atg8 -家族互动母题;ap. LIR:反平行LIR;“。拟南芥;AT5G06830/C53 (A.t.): cdk5rap3样蛋白;Atg8/ Atg8:自噬相关的8,分别在酵母和植物中;ATG8CL:马铃薯茄(Solanum tuberosum)的atg8c样;ATG8E: A.t的ATG8E;v.触点数:重原子触点的平均数目;BCL2: BCL2细胞凋亡调节因子;BNIP3: BCL2相互作用蛋白3;CALCOCO2/NDP52:钙结合和线圈结构域2;CALR: calreticulin;可以。LIR:正则LIR;CDF:累积分布函数;CDK5RAP3/C53 (H.s.): CDK5调控亚基相关蛋白3;[DE]W[DE]-LIR: TRIM5-like ncLIR;DSK2A:泛素结构域蛋白DSK2A;FUNDC1:包含1的FUN14域;GABARAP: GABA A型受体相关蛋白;HP0/1/2:疏水口袋0/1/2;HP0- lir: ncLIR接合HP0;h。智人;lclr:低置信度LIR (nclr与先前表征的nclr不相似);LDS: lir对接站点;LIR: lc3相互作用区;LO评分:发生评分的长度加权分数;MAP1LC3/LC3:微管相关蛋白1轻链3;MAP1LC3B/LC3B:微管相关蛋白1轻链3 β;MD:分子动力学;MEFV/pyrin: MEFV先天免疫调节剂,pyrin;minPAE:最小PAE;MSA:多序列比对;ncLIR:非正则LIR;NPC:核孔复合物;Nup159:核孔蛋白159;NUP214:核孔蛋白214;OPTN: optineurin;other@LDS:在lir对接地点附近的其他相互作用;PAE:预测对齐误差;PDCD6IP:程序性细胞死亡6相互作用蛋白;PDF:概率分布函数;pLDDT:预测局部距离差检验;PLEKHM1: pleckstrin同源和包含M1的RUN结构域;PTM:翻译后修饰;sAIM:洗牌AIM(带洗牌基序的ncLIR);seq。:序列;SIM:相扑互动主题;纤细:短线形图案;SMN1/SMN:运动神经元1存活,端粒;圣:phosphomimetic;STBD1:淀粉结合域1;STK3:丝氨酸/苏氨酸激酶3;SUMO:小泛素样调节剂;TBC1D2/TBC1D2A: TBC1域家族成员2;TEX264:睾丸表达264,er吞噬受体;TRIM5/TRIM5α:三方基序含蛋白5;UDS:对接站点;UIM:泛素相互作用基序;UIMC1/RAP80:含1的泛素相互作用基序;ULK1: unc-51样自噬激活激酶1;ULK2: unc-51样自噬激活激酶2;WT:野生型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信