COVID-19 open data: An ecological study and international collaboration examining pandemic trends in Northern Periphery arctic countries.

IF 2.3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Health Informatics Journal Pub Date : 2025-04-01 Epub Date: 2025-05-09 DOI:10.1177/14604582251315588
Michael E O'Callaghan, Monica Casey, Dana Pearl, Olivia Hickey, Anette Fosse, Sigurður E Sigurðsson, David W Savage, Katri Vehviläinen-Julkunen, Kirsi Bykachev, Anndra Parviainen, Holly Parker, Joan Condell, Gerry Leavey, Nigel Hart, Pál Weihe, Maria S Petersen, Liam Glynn
{"title":"COVID-19 open data: An ecological study and international collaboration examining pandemic trends in Northern Periphery arctic countries.","authors":"Michael E O'Callaghan, Monica Casey, Dana Pearl, Olivia Hickey, Anette Fosse, Sigurður E Sigurðsson, David W Savage, Katri Vehviläinen-Julkunen, Kirsi Bykachev, Anndra Parviainen, Holly Parker, Joan Condell, Gerry Leavey, Nigel Hart, Pál Weihe, Maria S Petersen, Liam Glynn","doi":"10.1177/14604582251315588","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> In the early stages of the COVID-19 pandemic, evidence generation lagged behind public health responses. This study describes an international collaboration of frontline clinicians who used open data describing COVID-19 trends to generate \"practice-based evidence\". <b>Methods:</b> Open data resources from nine Northern Periphery and Arctic (NPA) countries were harnessed using the open-source programming language 'R' and our collaborations analyses and insights were published on a public-facing website. The website's visualisations guided teleconference discussions from September 2020 to March 2021, focusing on contextualizing national responses, especially in rural regions. <b>Results:</b> This project facilitated shared learning from COVID-19 trends and highlighted key aspects of national responses. Notably, rural NPA regions experienced less COVID-19 cases and mortality in the first year of the pandemic. <b>Conclusion:</b> This international collaborative effort, driven by open data analysis, provided a platform to share real-world insights. The study offers a potential template for future pandemics and emphasises the importance of sustaining open data resources, including granular data like excess mortality, for effective pandemic learning.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 2","pages":"14604582251315588"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582251315588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In the early stages of the COVID-19 pandemic, evidence generation lagged behind public health responses. This study describes an international collaboration of frontline clinicians who used open data describing COVID-19 trends to generate "practice-based evidence". Methods: Open data resources from nine Northern Periphery and Arctic (NPA) countries were harnessed using the open-source programming language 'R' and our collaborations analyses and insights were published on a public-facing website. The website's visualisations guided teleconference discussions from September 2020 to March 2021, focusing on contextualizing national responses, especially in rural regions. Results: This project facilitated shared learning from COVID-19 trends and highlighted key aspects of national responses. Notably, rural NPA regions experienced less COVID-19 cases and mortality in the first year of the pandemic. Conclusion: This international collaborative effort, driven by open data analysis, provided a platform to share real-world insights. The study offers a potential template for future pandemics and emphasises the importance of sustaining open data resources, including granular data like excess mortality, for effective pandemic learning.

COVID-19开放数据:一项生态研究和国际合作,研究北部边缘北极国家的大流行趋势。
在COVID-19大流行的早期阶段,证据的产生落后于公共卫生应对措施。这项研究描述了一线临床医生的国际合作,他们使用描述COVID-19趋势的开放数据来生成“基于实践的证据”。方法:使用开源编程语言“R”利用来自9个北部边缘和北极(NPA)国家的开放数据资源,并将我们的合作分析和见解发布在面向公众的网站上。该网站的可视化指导了2020年9月至2021年3月期间的电话会议讨论,重点关注国家应对措施的背景,特别是在农村地区。结果:该项目促进了对COVID-19趋势的共同学习,并突出了国家应对措施的关键方面。值得注意的是,在大流行的第一年,农村地区的COVID-19病例和死亡率较低。结论:在开放数据分析的推动下,这一国际合作努力提供了一个分享现实世界见解的平台。该研究为未来的流行病提供了一个潜在的模板,并强调了保持开放数据资源的重要性,包括超额死亡率等细粒度数据,以有效地了解流行病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信