GeOKG: geometry-aware knowledge graph embedding for Gene Ontology and genes.

Chang-Uk Jeong, Jaesik Kim, Dokyoon Kim, Kyung-Ah Sohn
{"title":"GeOKG: geometry-aware knowledge graph embedding for Gene Ontology and genes.","authors":"Chang-Uk Jeong, Jaesik Kim, Dokyoon Kim, Kyung-Ah Sohn","doi":"10.1093/bioinformatics/btaf160","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Leveraging deep learning for the representation learning of Gene Ontology (GO) and Gene Ontology Annotation (GOA) holds significant promise for enhancing downstream biological tasks such as protein-protein interaction prediction. Prior approaches have predominantly used text- and graph-based methods, embedding GO and GOA in a single geometric space (e.g. Euclidean or hyperbolic). However, since the GO graph exhibits a complex and nonmonotonic hierarchy, single-space embeddings are insufficient to fully capture its structural nuances.</p><p><strong>Results: </strong>In this study, we address this limitation by exploiting geometric interaction to better reflect the intricate hierarchical structure of GO. Our proposed method, Geometry-Aware Knowledge Graph Embeddings for GO and Genes (GeOKG), leverages interactions among various geometric representations during training, thereby modeling the complex hierarchy of GO more effectively. Experiments at the GO level demonstrate the benefits of incorporating these geometric interactions, while gene-level tests reveal that GeOKG outperforms existing methods in protein-protein interaction prediction. These findings highlight the potential of using geometric interaction for embedding heterogeneous biomedical networks.</p><p><strong>Availability and implementation: </strong>https://github.com/ukjung21/GeOKG.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":"41 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Leveraging deep learning for the representation learning of Gene Ontology (GO) and Gene Ontology Annotation (GOA) holds significant promise for enhancing downstream biological tasks such as protein-protein interaction prediction. Prior approaches have predominantly used text- and graph-based methods, embedding GO and GOA in a single geometric space (e.g. Euclidean or hyperbolic). However, since the GO graph exhibits a complex and nonmonotonic hierarchy, single-space embeddings are insufficient to fully capture its structural nuances.

Results: In this study, we address this limitation by exploiting geometric interaction to better reflect the intricate hierarchical structure of GO. Our proposed method, Geometry-Aware Knowledge Graph Embeddings for GO and Genes (GeOKG), leverages interactions among various geometric representations during training, thereby modeling the complex hierarchy of GO more effectively. Experiments at the GO level demonstrate the benefits of incorporating these geometric interactions, while gene-level tests reveal that GeOKG outperforms existing methods in protein-protein interaction prediction. These findings highlight the potential of using geometric interaction for embedding heterogeneous biomedical networks.

Availability and implementation: https://github.com/ukjung21/GeOKG.

基因本体和基因的几何感知知识图嵌入。
动机:利用深度学习进行基因本体(GO)和基因本体注释(GOA)的表示学习,对于增强下游生物任务(如蛋白质-蛋白质相互作用预测)具有重要的前景。先前的方法主要使用基于文本和图形的方法,将GO和GOA嵌入到单个几何空间(例如欧几里得或双曲)中。然而,由于GO图显示出复杂和非单调的层次结构,单空间嵌入不足以完全捕捉其结构上的细微差别。结果:在本研究中,我们通过利用几何相互作用来解决这一限制,以更好地反映氧化石墨烯复杂的层次结构。我们提出的方法,几何感知的GO和基因知识图嵌入(GeOKG),在训练过程中利用各种几何表示之间的相互作用,从而更有效地建模GO的复杂层次结构。氧化石墨烯水平的实验证明了结合这些几何相互作用的好处,而基因水平的测试表明,GeOKG在蛋白质-蛋白质相互作用预测方面优于现有的方法。这些发现突出了利用几何相互作用嵌入异构生物医学网络的潜力。可用性和实现:https://github.com/ukjung21/GeOKG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信