Benchmarking the methods for predicting base pairs in RNA-RNA interactions.

Mei Lang, Thomas Litfin, Ke Chen, Jian Zhan, Yaoqi Zhou
{"title":"Benchmarking the methods for predicting base pairs in RNA-RNA interactions.","authors":"Mei Lang, Thomas Litfin, Ke Chen, Jian Zhan, Yaoqi Zhou","doi":"10.1093/bioinformatics/btaf289","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The intricate network of RNA-RNA interactions, crucial for orchestrating essential cellular processes like transcriptional and translational regulations, has been unveiling through high-throughput techniques and computational predictions. As experimental determination of RNA-RNA interactions at the base-pair resolution remains challenging, a timely update for assessing complementary computational tools is necessary, particularly given the recent emergence of deep learning-based methods.</p><p><strong>Results: </strong>Here, we employed base pairs derived from three-dimensional RNA complex structures as a gold standard benchmark to assess the performance of 23 different methods ranging from alignment-based methods, free-energy-based minimization to deep-learning techniques. The result indicates that a deep-learning-based method, SPOT-RNA, can be generalized to make accurate zero-shot predictions of RNA-RNA interactions not only between previously unseen RNA structures but also between RNAs without monomeric structures. The finding underscores the potential of deep learning as a robust tool for advancing our understanding of these complex molecular interactions.</p><p><strong>Availability: </strong>All data and codes are available at https://github.com/meilanglang/RNA-RNA-Interaction.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The intricate network of RNA-RNA interactions, crucial for orchestrating essential cellular processes like transcriptional and translational regulations, has been unveiling through high-throughput techniques and computational predictions. As experimental determination of RNA-RNA interactions at the base-pair resolution remains challenging, a timely update for assessing complementary computational tools is necessary, particularly given the recent emergence of deep learning-based methods.

Results: Here, we employed base pairs derived from three-dimensional RNA complex structures as a gold standard benchmark to assess the performance of 23 different methods ranging from alignment-based methods, free-energy-based minimization to deep-learning techniques. The result indicates that a deep-learning-based method, SPOT-RNA, can be generalized to make accurate zero-shot predictions of RNA-RNA interactions not only between previously unseen RNA structures but also between RNAs without monomeric structures. The finding underscores the potential of deep learning as a robust tool for advancing our understanding of these complex molecular interactions.

Availability: All data and codes are available at https://github.com/meilanglang/RNA-RNA-Interaction.

Supplementary information: Supplementary data are available at Bioinformatics online.

RNA-RNA相互作用中预测碱基对的基准方法。
动机:通过高通量技术和计算预测,RNA-RNA相互作用的复杂网络已经被揭示出来,它对转录和翻译调节等基本细胞过程的协调至关重要。由于在碱基对分辨率下RNA-RNA相互作用的实验测定仍然具有挑战性,因此评估互补计算工具的及时更新是必要的,特别是考虑到最近出现的基于深度学习的方法。在这里,我们采用来自三维RNA复合物结构的碱基对作为金标准基准来评估23种不同方法的性能,包括基于比对的方法、基于自由能量的最小化方法和深度学习技术。结果表明,基于深度学习的方法SPOT-RNA可以推广到对RNA-RNA相互作用进行精确的零shot预测,不仅在以前看不见的RNA结构之间,而且在没有单体结构的RNA之间。这一发现强调了深度学习作为一种强大工具的潜力,可以促进我们对这些复杂分子相互作用的理解。可用性:所有数据和代码可在https://github.com/meilanglang/RNA-RNA-Interaction.Supplementary信息上获得;补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信