Weihua Li, Hongwei Zheng, Jennie E. Brand, Aaron Clauset
{"title":"Gender and racial diversity socialization in science","authors":"Weihua Li, Hongwei Zheng, Jennie E. Brand, Aaron Clauset","doi":"10.1038/s43588-025-00795-9","DOIUrl":null,"url":null,"abstract":"Scientific collaboration networks are a form of unequally distributed social capital that shapes both researcher job placement and long-term research productivity and prominence. However, the role of collaboration networks in shaping the gender and racial diversity of the scientific workforce remains unclear. Here we propose a computational null model to investigate the degree to which early-career scientific collaborators with representationally diverse cohorts of scholars are associated with forming or participating in more diverse research groups as established researchers. When testing this hypothesis using two large-scale, longitudinal datasets on scientific collaborations, we find that the gender and racial diversity in a researcher’s early-career collaboration environment is strongly associated with the diversity of their collaborators in their established period. This diversity-association effect is particularly prominent for men. Coupled with gender and racial homophily between advisors and advisees, collaborator diversity represents a generational effect that partly explains why changes in representation within the scientific workforce tend to happen very slowly. A computational null model is proposed to study the gender and racial diversity-association effects in academia. Researchers’ early training in diverse environments is strongly correlated with nurturing diverse groups in the established period.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 6","pages":"481-491"},"PeriodicalIF":18.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00795-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific collaboration networks are a form of unequally distributed social capital that shapes both researcher job placement and long-term research productivity and prominence. However, the role of collaboration networks in shaping the gender and racial diversity of the scientific workforce remains unclear. Here we propose a computational null model to investigate the degree to which early-career scientific collaborators with representationally diverse cohorts of scholars are associated with forming or participating in more diverse research groups as established researchers. When testing this hypothesis using two large-scale, longitudinal datasets on scientific collaborations, we find that the gender and racial diversity in a researcher’s early-career collaboration environment is strongly associated with the diversity of their collaborators in their established period. This diversity-association effect is particularly prominent for men. Coupled with gender and racial homophily between advisors and advisees, collaborator diversity represents a generational effect that partly explains why changes in representation within the scientific workforce tend to happen very slowly. A computational null model is proposed to study the gender and racial diversity-association effects in academia. Researchers’ early training in diverse environments is strongly correlated with nurturing diverse groups in the established period.