A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data.

Seungyeon Lee, Ruoqi Liu, Feixiong Cheng, Ping Zhang
{"title":"A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data.","authors":"Seungyeon Lee, Ruoqi Liu, Feixiong Cheng, Ping Zhang","doi":"10.1145/3690624.3709418","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repurposing identifies new therapeutic uses for existing drugs, reducing the time and costs compared to traditional <i>de novo</i> drug discovery. Most existing drug repurposing studies using real-world patient data often treat the entire population as homogeneous, ignoring the heterogeneity of treatment responses across patient subgroups. This approach may overlook promising drugs that benefit specific subgroups but lack notable treatment effects across the entire population, potentially limiting the number of repurposable candidates identified. To address this, we introduce STEDR, a novel drug repurposing framework that integrates subgroup analysis with treatment effect estimation. Our approach first identifies repurposing candidates by emulating multiple clinical trials on real-world patient data and then characterizes patient subgroups by learning subgroup-specific treatment effects. We deploy STEDR to Alzheimer's Disease (AD), a condition with few approved drugs and known heterogeneity in treatment responses. We emulate trials for over one thousand medications on a large-scale real-world database covering over 8 million patients, identifying 14 drug candidates with beneficial effects to AD in characterized subgroups. Experiments demonstrate STEDR's superior capability in identifying repurposing candidates compared to existing approaches. Additionally, our method can characterize clinically relevant patient subgroups associated with important AD-related risk factors, paving the way for precision drug repurposing.</p>","PeriodicalId":74037,"journal":{"name":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","volume":"2025 v1","pages":"2347-2358"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3690624.3709418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drug repurposing identifies new therapeutic uses for existing drugs, reducing the time and costs compared to traditional de novo drug discovery. Most existing drug repurposing studies using real-world patient data often treat the entire population as homogeneous, ignoring the heterogeneity of treatment responses across patient subgroups. This approach may overlook promising drugs that benefit specific subgroups but lack notable treatment effects across the entire population, potentially limiting the number of repurposable candidates identified. To address this, we introduce STEDR, a novel drug repurposing framework that integrates subgroup analysis with treatment effect estimation. Our approach first identifies repurposing candidates by emulating multiple clinical trials on real-world patient data and then characterizes patient subgroups by learning subgroup-specific treatment effects. We deploy STEDR to Alzheimer's Disease (AD), a condition with few approved drugs and known heterogeneity in treatment responses. We emulate trials for over one thousand medications on a large-scale real-world database covering over 8 million patients, identifying 14 drug candidates with beneficial effects to AD in characterized subgroups. Experiments demonstrate STEDR's superior capability in identifying repurposing candidates compared to existing approaches. Additionally, our method can characterize clinically relevant patient subgroups associated with important AD-related risk factors, paving the way for precision drug repurposing.

通过模拟真实世界患者数据的临床试验实现精确药物再利用的深度亚分组框架。
药物再利用确定了现有药物的新治疗用途,与传统的新药物发现相比,减少了时间和成本。大多数使用真实患者数据的现有药物再利用研究通常将整个人群视为均匀的,忽略了患者亚组治疗反应的异质性。这种方法可能会忽略对特定亚群有益但对整个人群缺乏显着治疗效果的有希望的药物,潜在地限制了确定的可重复使用的候选药物的数量。为了解决这个问题,我们引入了STEDR,这是一种新的药物再利用框架,将亚组分析与治疗效果评估相结合。我们的方法首先通过模拟真实世界患者数据的多个临床试验来确定重新使用的候选人,然后通过学习亚组特异性治疗效果来确定患者亚组的特征。我们将STEDR应用于阿尔茨海默病(AD),这是一种批准药物很少且已知治疗反应异质性的疾病。我们在一个覆盖800多万患者的大规模真实世界数据库中模拟了1000多种药物的试验,确定了14种候选药物在特征亚组中对AD有有益作用。实验表明,与现有方法相比,STEDR在识别候选候选对象方面具有优越的能力。此外,我们的方法可以描述与ad相关的重要危险因素相关的临床相关患者亚组,为精确药物再利用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信