Based on the Dual Pathway of Interaction-Mediated NF-κB in Cell Apoptosis and Immune Inflammation to Study the Effect of Danzhi Xiaoyao Powder on the Learning and Cognitive Ability of AD Model Rats.
{"title":"Based on the Dual Pathway of Interaction-Mediated NF-κB in Cell Apoptosis and Immune Inflammation to Study the Effect of Danzhi Xiaoyao Powder on the Learning and Cognitive Ability of AD Model Rats.","authors":"Hu-Ping Wang, Ming-Cheng Li, Jiao Yang, Jun Zhou, Zhi-Peng Meng, Yun-Yun Hu, Yu-Jie Lyu, Yi-Qin Chen, Yu-Mei Han, Wen-Li Pei","doi":"10.2147/DNND.S475290","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Apoptosis and immune inflammation play important roles in the pathological process of Alzheimer's disease (AD), but their specific pathogenesis is still unclear. Therefore, this article focuses on exploring the effects of Danzhi Xiaoyao Powder (DXP) on the learning and memory ability of AD model rats from the dual mechanisms of apoptosis and immune inflammation.</p><p><strong>Methods: </strong>The AD model was replicated by injecting Okadaic acid (100 ng) into the bilateral hippocampus of rats. Successful rats were selected and orally administered with donepezil hydrochloride and DXP decoction for 42 days. Their learning and memory abilities, hippocampal morphology, Aβ expression, inflammatory factors, apoptotic factors, anti apoptotic factors, as well as the expression of pathway proteins and mRNA were detected.</p><p><strong>Results: </strong>After DXP intervention, the learning and memory abilities of rats improved, the neuronal cell arrangement was more complete, the expression of Aβ decreased, the expression of pro-inflammatory cytokine and apoptotic factors decreased, the expression of anti apoptotic factors increased, Protein Kinase B (Akt) expression and activity significant up-regulation, and nuclear factor kappa-B (NF-κB), p38 MAPK (p38), MAPKAPK-2 (MK2), Cyclooxygenase-2 (COX-2) protein and mRNA expression were significantly down-regulated.</p><p><strong>Conclusion: </strong>DXP can improve the learning and cognitive abilities of AD model rats, and its mechanism of action may be related to the regulation of the Akt/NF-κB apoptosis pathway mediated by NF-κB interaction and the p38MAPK/MK2/COX-2 immune inflammatory dual pathway.</p>","PeriodicalId":93972,"journal":{"name":"Degenerative neurological and neuromuscular disease","volume":"15 ","pages":"41-64"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Degenerative neurological and neuromuscular disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/DNND.S475290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Apoptosis and immune inflammation play important roles in the pathological process of Alzheimer's disease (AD), but their specific pathogenesis is still unclear. Therefore, this article focuses on exploring the effects of Danzhi Xiaoyao Powder (DXP) on the learning and memory ability of AD model rats from the dual mechanisms of apoptosis and immune inflammation.
Methods: The AD model was replicated by injecting Okadaic acid (100 ng) into the bilateral hippocampus of rats. Successful rats were selected and orally administered with donepezil hydrochloride and DXP decoction for 42 days. Their learning and memory abilities, hippocampal morphology, Aβ expression, inflammatory factors, apoptotic factors, anti apoptotic factors, as well as the expression of pathway proteins and mRNA were detected.
Results: After DXP intervention, the learning and memory abilities of rats improved, the neuronal cell arrangement was more complete, the expression of Aβ decreased, the expression of pro-inflammatory cytokine and apoptotic factors decreased, the expression of anti apoptotic factors increased, Protein Kinase B (Akt) expression and activity significant up-regulation, and nuclear factor kappa-B (NF-κB), p38 MAPK (p38), MAPKAPK-2 (MK2), Cyclooxygenase-2 (COX-2) protein and mRNA expression were significantly down-regulated.
Conclusion: DXP can improve the learning and cognitive abilities of AD model rats, and its mechanism of action may be related to the regulation of the Akt/NF-κB apoptosis pathway mediated by NF-κB interaction and the p38MAPK/MK2/COX-2 immune inflammatory dual pathway.