Interior-point methods for monotone linear complementarity problems based on the new kernel function with applications to control tabular adjustment problem.

Goran Lesaja, Anna Oganian, Tifani Williams, Ionut Iacob, Mehtab Iqbal
{"title":"Interior-point methods for monotone linear complementarity problems based on the new kernel function with applications to control tabular adjustment problem.","authors":"Goran Lesaja, Anna Oganian, Tifani Williams, Ionut Iacob, Mehtab Iqbal","doi":"10.19139/soic-2310-5070-2322","DOIUrl":null,"url":null,"abstract":"<p><p>We present a feasible kernel-based interior point method (IPM) to solve the monotone linear complementarity problem (LCP) which is based on an eligible kernel function with a new logarithmic barrier term. This kernel function defines the new search direction and the neighborhood of the central path. We show the global convergence of the algorithm and derive the iteration bounds for short- and long-step versions of the algorithm. We applied the method to solve a continuous Control Tabular Adjustment (CTA) problem which is an important Statistical Disclosure Limitation (SDL) model for protection of tabular data. Numerical results on a test example show that this algorithm is a viable option to the existing methods for solving continuous CTA problems. We also apply the algorithm to the set of randomly generated monotone LCPs showing that the initial implementation performs well on these instances of LCPs. However, this limited numerical testing is done for illustration purposes; an extensive numerical study is necessary to draw more definite conclusions on the behavior of the algorithm.</p>","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"13 3","pages":"900-921"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-2322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a feasible kernel-based interior point method (IPM) to solve the monotone linear complementarity problem (LCP) which is based on an eligible kernel function with a new logarithmic barrier term. This kernel function defines the new search direction and the neighborhood of the central path. We show the global convergence of the algorithm and derive the iteration bounds for short- and long-step versions of the algorithm. We applied the method to solve a continuous Control Tabular Adjustment (CTA) problem which is an important Statistical Disclosure Limitation (SDL) model for protection of tabular data. Numerical results on a test example show that this algorithm is a viable option to the existing methods for solving continuous CTA problems. We also apply the algorithm to the set of randomly generated monotone LCPs showing that the initial implementation performs well on these instances of LCPs. However, this limited numerical testing is done for illustration purposes; an extensive numerical study is necessary to draw more definite conclusions on the behavior of the algorithm.

基于新核函数的单调线性互补问题的内点法及其在控制表格平差问题中的应用。
针对单调线性互补问题,提出了一种可行核内点法(IPM),该方法基于一个具有新的对数障碍项的核函数。这个核函数定义了新的搜索方向和中心路径的邻域。我们证明了该算法的全局收敛性,并推导了该算法的短步和长步版本的迭代界。我们应用该方法解决了一个连续的控制表格调整(CTA)问题,这是一个重要的统计披露限制(SDL)模型,用于表格数据的保护。算例的数值结果表明,该算法是求解连续CTA问题的可行选择。我们还将该算法应用于随机生成的单调lcp集,表明初始实现在这些lcp实例上表现良好。然而,这个有限的数值测试是为了说明目的;为了对该算法的行为得出更明确的结论,需要进行广泛的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信