Iryna Hartsock, Cyrillo Araujo, Les Folio, Ghulam Rasool
{"title":"Improving Radiology Report Conciseness and Structure via Local Large Language Models.","authors":"Iryna Hartsock, Cyrillo Araujo, Les Folio, Ghulam Rasool","doi":"10.1007/s10278-025-01510-w","DOIUrl":null,"url":null,"abstract":"<p><p>Radiology reports are often lengthy and unstructured, posing challenges for referring physicians to quickly identify critical imaging findings while increasing risk of missed information. This retrospective study aimed to enhance radiology reports by making them concise and well-structured, with findings organized by relevant organs. To achieve this, we utilized private large language models (LLMs) deployed locally within our institution's firewall, ensuring data security and minimizing computational costs. Using a dataset of 814 radiology reports from seven board-certified body radiologists at [-blinded for review-], we tested five prompting strategies within the LangChain framework. After evaluating several models, the Mixtral LLM demonstrated superior adherence to formatting requirements compared to alternatives like Llama. The optimal strategy involved condensing reports first and then applying structured formatting based on specific instructions, reducing verbosity while improving clarity. Across all radiologists and reports, the Mixtral LLM reduced redundant word counts by more than 53%. These findings highlight the potential of locally deployed, open-source LLMs to streamline radiology reporting. By generating concise, well-structured reports, these models enhance information retrieval and better meet the needs of referring physicians, ultimately improving clinical workflows.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01510-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiology reports are often lengthy and unstructured, posing challenges for referring physicians to quickly identify critical imaging findings while increasing risk of missed information. This retrospective study aimed to enhance radiology reports by making them concise and well-structured, with findings organized by relevant organs. To achieve this, we utilized private large language models (LLMs) deployed locally within our institution's firewall, ensuring data security and minimizing computational costs. Using a dataset of 814 radiology reports from seven board-certified body radiologists at [-blinded for review-], we tested five prompting strategies within the LangChain framework. After evaluating several models, the Mixtral LLM demonstrated superior adherence to formatting requirements compared to alternatives like Llama. The optimal strategy involved condensing reports first and then applying structured formatting based on specific instructions, reducing verbosity while improving clarity. Across all radiologists and reports, the Mixtral LLM reduced redundant word counts by more than 53%. These findings highlight the potential of locally deployed, open-source LLMs to streamline radiology reporting. By generating concise, well-structured reports, these models enhance information retrieval and better meet the needs of referring physicians, ultimately improving clinical workflows.