MotionCrafter: Plug-and-Play Motion Guidance for Diffusion Models.

Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang, Haibin Huang, Chongyang Ma, Pengfei Wan, Tong-Yee Lee, Changsheng Xu
{"title":"MotionCrafter: Plug-and-Play Motion Guidance for Diffusion Models.","authors":"Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang, Haibin Huang, Chongyang Ma, Pengfei Wan, Tong-Yee Lee, Changsheng Xu","doi":"10.1109/TVCG.2025.3568880","DOIUrl":null,"url":null,"abstract":"<p><p>The essence of a video lies in the dynamic motions. While text-to-video generative diffusion models have made significant strides in creating diverse content, effectively controlling specific motions through text prompts remains a challenge. By utilizing user-specified reference videos, the more precise guidance for character actions, object movements, and camera movements can be achieved. This gives rise to the task of motion customization, where the primary challenge lies in effectively decoupling the appearance and motion within a video clip. To address this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method that is suitable for both pre-trained text-to-video and text-to-image diffusion models. MotionCrafter employs a parallel spatial-temporal architecture that integrates the reference motion into the temporal component of the base model, while independently adjusting the spatial module for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch motion disentanglement approach, which includes a motion disentanglement loss and an appearance prior enhancement strategy. To facilitate more efficient learning of motions, we further propose a novel timestep-layered tuning strategy that directs the diffusion model to focus on motion-level information. Through comprehensive quantitative and qualitative experiments, along with user preference tests, we demonstrate that MotionCrafter can successfully integrate dynamic motions while maintaining the coherence and quality of the base model, providing a wide range of appearance generation capabilities. MotionCrafter can be applied to various personalized backbones in the community to generate videos with a variety of artistic styles.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3568880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The essence of a video lies in the dynamic motions. While text-to-video generative diffusion models have made significant strides in creating diverse content, effectively controlling specific motions through text prompts remains a challenge. By utilizing user-specified reference videos, the more precise guidance for character actions, object movements, and camera movements can be achieved. This gives rise to the task of motion customization, where the primary challenge lies in effectively decoupling the appearance and motion within a video clip. To address this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method that is suitable for both pre-trained text-to-video and text-to-image diffusion models. MotionCrafter employs a parallel spatial-temporal architecture that integrates the reference motion into the temporal component of the base model, while independently adjusting the spatial module for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch motion disentanglement approach, which includes a motion disentanglement loss and an appearance prior enhancement strategy. To facilitate more efficient learning of motions, we further propose a novel timestep-layered tuning strategy that directs the diffusion model to focus on motion-level information. Through comprehensive quantitative and qualitative experiments, along with user preference tests, we demonstrate that MotionCrafter can successfully integrate dynamic motions while maintaining the coherence and quality of the base model, providing a wide range of appearance generation capabilities. MotionCrafter can be applied to various personalized backbones in the community to generate videos with a variety of artistic styles.

motioncraft:即插即用的扩散模型运动指导。
视频的本质在于动态的运动。虽然文本到视频生成扩散模型在创建多样化内容方面取得了重大进展,但通过文本提示有效控制特定动作仍然是一个挑战。通过使用用户指定的参考视频,可以实现对角色动作,物体运动和摄像机运动的更精确的指导。这就产生了运动定制的任务,其中主要的挑战在于有效地解耦视频剪辑中的外观和运动。为了解决这一挑战,我们引入了MotionCrafter,这是一种新颖的单镜头实例引导运动定制方法,适用于预训练的文本到视频和文本到图像扩散模型。MotionCrafter采用并行的时空架构,将参考运动集成到基本模型的时间组件中,同时独立调整空间模块以进行字符或样式控制。为了增强运动和外观的解纠缠,我们提出了一种创新的双分支运动解纠缠方法,该方法包括运动解纠缠损失和外观优先增强策略。为了促进更有效的运动学习,我们进一步提出了一种新的时间步长分层调谐策略,该策略指导扩散模型关注运动级信息。通过全面的定量和定性实验,以及用户偏好测试,我们证明了MotionCrafter可以成功地集成动态运动,同时保持基本模型的一致性和质量,提供广泛的外观生成能力。motioncraft可以应用于社区中的各种个性化骨干,生成各种艺术风格的视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信