Valeria Bica, Veronica Venafra, Giorgia Massacci, Simone Graziosi, Sara Gualdi, Gessica Minnella, Federica Sorà, Patrizia Chiusolo, Maria Elsa Brunetti, Gennaro Napolitano, Massimo Breccia, Dimitrios Mougiakakos, Martin Böttcher, Thomas Fischer, Livia Perfetto, Francesca Sacco
{"title":"A network-based approach to overcome BCR::ABL1-independent resistance in chronic myeloid leukemia.","authors":"Valeria Bica, Veronica Venafra, Giorgia Massacci, Simone Graziosi, Sara Gualdi, Gessica Minnella, Federica Sorà, Patrizia Chiusolo, Maria Elsa Brunetti, Gennaro Napolitano, Massimo Breccia, Dimitrios Mougiakakos, Martin Böttcher, Thomas Fischer, Livia Perfetto, Francesca Sacco","doi":"10.1186/s12964-025-02185-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>About 40% of relapsed or non-responder tumors exhibit therapeutic resistance in the absence of a clear genetic cause, suggesting a pivotal role of intracellular communication. A deeper understanding of signaling pathways rewiring occurring in resistant cells is crucial to propose alternative effective strategies for cancer patients.</p><p><strong>Methods: </strong>To achieve this goal, we developed a novel multi-step strategy, which integrates high sensitive mass spectrometry-based phosphoproteomics with network-based analysis. This strategy builds context-specific networks recapitulating the signaling rewiring upon drug treatment in therapy-resistant and sensitive cells.</p><p><strong>Results: </strong>We applied this strategy to elucidate the BCR::ABL1-independent mechanisms that drive relapse upon therapy discontinuation in chronic myeloid leukemia (CML) patients. We built a signaling map, detailing - from receptor to key phenotypes - the molecular mechanisms implicated in the control of proliferation, DNA damage response and inflammation of therapy-resistant cells. In-depth analysis of this map uncovered novel therapeutic vulnerabilities. Functional validation in patient-derived leukemic stem cells revealed a crucial role of acquired FLT3-dependency and its underlying molecular mechanism.</p><p><strong>Conclusions: </strong>In conclusion, our study presents a novel generally applicable strategy and the reposition of FLT3, one of the most frequently mutated drivers of acute leukemia, as a potential therapeutic target for CML relapsed patients.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"179"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02185-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: About 40% of relapsed or non-responder tumors exhibit therapeutic resistance in the absence of a clear genetic cause, suggesting a pivotal role of intracellular communication. A deeper understanding of signaling pathways rewiring occurring in resistant cells is crucial to propose alternative effective strategies for cancer patients.
Methods: To achieve this goal, we developed a novel multi-step strategy, which integrates high sensitive mass spectrometry-based phosphoproteomics with network-based analysis. This strategy builds context-specific networks recapitulating the signaling rewiring upon drug treatment in therapy-resistant and sensitive cells.
Results: We applied this strategy to elucidate the BCR::ABL1-independent mechanisms that drive relapse upon therapy discontinuation in chronic myeloid leukemia (CML) patients. We built a signaling map, detailing - from receptor to key phenotypes - the molecular mechanisms implicated in the control of proliferation, DNA damage response and inflammation of therapy-resistant cells. In-depth analysis of this map uncovered novel therapeutic vulnerabilities. Functional validation in patient-derived leukemic stem cells revealed a crucial role of acquired FLT3-dependency and its underlying molecular mechanism.
Conclusions: In conclusion, our study presents a novel generally applicable strategy and the reposition of FLT3, one of the most frequently mutated drivers of acute leukemia, as a potential therapeutic target for CML relapsed patients.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.