Chris J Oates, Toni Karvonen, Aretha L Teckentrup, Marina Strocchi, Steven A Niederer
{"title":"Probabilistic Richardson extrapolation.","authors":"Chris J Oates, Toni Karvonen, Aretha L Teckentrup, Marina Strocchi, Steven A Niederer","doi":"10.1093/jrsssb/qkae098","DOIUrl":null,"url":null,"abstract":"<p><p>For over a century, extrapolation methods have provided a powerful tool to improve the convergence order of a numerical method. However, these tools are not well-suited to modern computer codes, where multiple continua are discretized and convergence orders are not easily analysed. To address this challenge, we present a probabilistic perspective on Richardson extrapolation, a point of view that unifies classical extrapolation methods with modern multi-fidelity modelling, and handles uncertain convergence orders by allowing these to be statistically estimated. The approach is developed using Gaussian processes, leading to <i>Gauss-Richardson Extrapolation</i>. Conditions are established under which extrapolation using the conditional mean achieves a polynomial (or even an exponential) speed-up compared to the original numerical method. Further, the probabilistic formulation unlocks the possibility of experimental design, casting the selection of fidelities as a continuous optimization problem, which can then be (approximately) solved. A case study involving a computational cardiac model demonstrates that practical gains in accuracy can be achieved using the GRE method.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"87 2","pages":"457-479"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkae098","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
For over a century, extrapolation methods have provided a powerful tool to improve the convergence order of a numerical method. However, these tools are not well-suited to modern computer codes, where multiple continua are discretized and convergence orders are not easily analysed. To address this challenge, we present a probabilistic perspective on Richardson extrapolation, a point of view that unifies classical extrapolation methods with modern multi-fidelity modelling, and handles uncertain convergence orders by allowing these to be statistically estimated. The approach is developed using Gaussian processes, leading to Gauss-Richardson Extrapolation. Conditions are established under which extrapolation using the conditional mean achieves a polynomial (or even an exponential) speed-up compared to the original numerical method. Further, the probabilistic formulation unlocks the possibility of experimental design, casting the selection of fidelities as a continuous optimization problem, which can then be (approximately) solved. A case study involving a computational cardiac model demonstrates that practical gains in accuracy can be achieved using the GRE method.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.