Pediatric Long COVID Subphenotypes: An EHR-based study from the RECOVER program.

IF 7.7
PLOS digital health Pub Date : 2025-04-10 eCollection Date: 2025-04-01 DOI:10.1371/journal.pdig.0000747
Vitaly Lorman, L Charles Bailey, Xing Song, Suchitra Rao, Mady Hornig, Levon Utidjian, Hanieh Razzaghi, Asuncion Mejias, John Erik Leikauf, Seuli Bose Brill, Andrea Allen, H Timothy Bunnell, Cara Reedy, Abu Saleh Mohammad Mosa, Benjamin D Horne, Carol Reynolds Geary, Cynthia H Chuang, David A Williams, Dimitri A Christakis, Elizabeth A Chrischilles, Eneida A Mendonca, Lindsay G Cowell, Lisa McCorkell, Mei Liu, Mollie R Cummins, Ravi Jhaveri, Saul Blecker, Christopher B Forrest
{"title":"Pediatric Long COVID Subphenotypes: An EHR-based study from the RECOVER program.","authors":"Vitaly Lorman, L Charles Bailey, Xing Song, Suchitra Rao, Mady Hornig, Levon Utidjian, Hanieh Razzaghi, Asuncion Mejias, John Erik Leikauf, Seuli Bose Brill, Andrea Allen, H Timothy Bunnell, Cara Reedy, Abu Saleh Mohammad Mosa, Benjamin D Horne, Carol Reynolds Geary, Cynthia H Chuang, David A Williams, Dimitri A Christakis, Elizabeth A Chrischilles, Eneida A Mendonca, Lindsay G Cowell, Lisa McCorkell, Mei Liu, Mollie R Cummins, Ravi Jhaveri, Saul Blecker, Christopher B Forrest","doi":"10.1371/journal.pdig.0000747","DOIUrl":null,"url":null,"abstract":"<p><p>Pediatric Long COVID has been associated with a wide variety of symptoms, conditions, and organ systems, but distinct clinical presentations, or subphenotypes, are still being elucidated. In this exploratory analysis, we identified a cohort of pediatric (age <21) patients with evidence of Long COVID and no pre-existing complex chronic conditions using electronic health record data from 38 institutions and used an unsupervised machine learning-based approach to identify subphenotypes. Our method, an extension of the Phe2Vec algorithm, uses tens of thousands of clinical concepts from multiple domains to represent patients' clinical histories to then identify groups of patients with similar presentations. The results indicate that cardiorespiratory presentations are most common (present in 54% of patients) followed by subphenotypes marked (in decreasing order of frequency) by musculoskeletal pain, neuropsychiatric conditions, gastrointestinal symptoms, headache, and fatigue.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 4","pages":"e0000747"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pediatric Long COVID has been associated with a wide variety of symptoms, conditions, and organ systems, but distinct clinical presentations, or subphenotypes, are still being elucidated. In this exploratory analysis, we identified a cohort of pediatric (age <21) patients with evidence of Long COVID and no pre-existing complex chronic conditions using electronic health record data from 38 institutions and used an unsupervised machine learning-based approach to identify subphenotypes. Our method, an extension of the Phe2Vec algorithm, uses tens of thousands of clinical concepts from multiple domains to represent patients' clinical histories to then identify groups of patients with similar presentations. The results indicate that cardiorespiratory presentations are most common (present in 54% of patients) followed by subphenotypes marked (in decreasing order of frequency) by musculoskeletal pain, neuropsychiatric conditions, gastrointestinal symptoms, headache, and fatigue.

儿科长COVID亚表型:来自RECOVER项目的基于ehr的研究。
小儿长冠状病毒病与多种症状、病症和器官系统有关,但不同的临床表现或亚表型仍在阐明中。在这项探索性分析中,我们确定了一组儿童(年龄)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信