{"title":"Null subtraction imaging combined with modified delay multiply-and-sum beamforming for coherent plane-wave compounding.","authors":"Yijun Xu, Yaoting Yue, Hao Wang, Wenting Gu, Boyi Li, Yaqing Chen, Xin Liu","doi":"10.1007/s11517-025-03364-4","DOIUrl":null,"url":null,"abstract":"<p><p>Coherent plane-wave compounding, while efficient for ultrafast ultrasound imaging, yields lower image quality due to unfocused waves. Delay multiply-and-sum (DMAS) beamformer is one of the representative coherence-based methods which can improve images quality, but suffers from poor speckle quality brought by oversuppression. Current DMAS-based methods involve trade-offs between contrast, resolution, and speckle preservation. To overcome this limitation, a new beamformer method combining the null subtraction imaging (NSI) and DMAS is investigated. The proposed method explores the DMAS on different beamformers which employs NSI and delay and sum (DAS) at receive and do multiply-and-sum on different beamformers across transmitting dimension, thereby simultaneously possessing the speckle quality of DAS and the high resolution of NSI. The effectiveness of the proposed method is evaluated through simulation, phantom, and in vivo datasets. From the experimental study, in comparison with NSI, the proposed method has improved contrast ratio by 10.02%, speckle signal-to-noise ratio by 45.19%, and generalized contrast-to-noise ratio by 12.37%. The method has also improved the full width at half maximum by up to 0.24 mm. The results indicate that the proposed method achieves better resolution and contrast, while also alleviating the issue of excessive compression.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03364-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent plane-wave compounding, while efficient for ultrafast ultrasound imaging, yields lower image quality due to unfocused waves. Delay multiply-and-sum (DMAS) beamformer is one of the representative coherence-based methods which can improve images quality, but suffers from poor speckle quality brought by oversuppression. Current DMAS-based methods involve trade-offs between contrast, resolution, and speckle preservation. To overcome this limitation, a new beamformer method combining the null subtraction imaging (NSI) and DMAS is investigated. The proposed method explores the DMAS on different beamformers which employs NSI and delay and sum (DAS) at receive and do multiply-and-sum on different beamformers across transmitting dimension, thereby simultaneously possessing the speckle quality of DAS and the high resolution of NSI. The effectiveness of the proposed method is evaluated through simulation, phantom, and in vivo datasets. From the experimental study, in comparison with NSI, the proposed method has improved contrast ratio by 10.02%, speckle signal-to-noise ratio by 45.19%, and generalized contrast-to-noise ratio by 12.37%. The method has also improved the full width at half maximum by up to 0.24 mm. The results indicate that the proposed method achieves better resolution and contrast, while also alleviating the issue of excessive compression.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).