{"title":"Biomarker-guided adaptive enrichment design with threshold detection for clinical trials with time-to-event outcome.","authors":"Kaiyuan Hua, Hwanhee Hong, Xiaofei Wang","doi":"10.1080/10543406.2025.2489291","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarker-guided designs are increasingly used to evaluate personalized treatments based on patients' biomarker status in Phase II and III clinical trials. With adaptive enrichment, these designs can improve the efficiency of evaluating the treatment effect in biomarker-positive patients by increasing their proportion in the randomized trial. While time-to-event outcomes are often used as the primary endpoint to measure treatment effects for a new therapy in severe diseases like cancer and cardiovascular diseases, there is limited research on biomarker-guided adaptive enrichment trials in this context. Such trials almost always adopt hazard ratio methods for statistical measurement of treatment effects. In contrast, restricted mean survival time (RMST) has gained popularity for analyzing time-to-event outcomes because it offers more straightforward interpretations of treatment effects and does not require the proportional hazard assumption. This paper proposes a two-stage biomarker-guided adaptive RMST design with threshold detection and patient enrichment. We develop sophisticated methods for identifying the optimal biomarker threshold and biomarker-positive subgroup, treatment effect estimators, and approaches for type I error rate, power analysis, and sample size calculation. We present a numerical example of re-designing an oncology trial. An extensive simulation study is conducted to evaluate the performance of the proposed design.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomarker-guided designs are increasingly used to evaluate personalized treatments based on patients' biomarker status in Phase II and III clinical trials. With adaptive enrichment, these designs can improve the efficiency of evaluating the treatment effect in biomarker-positive patients by increasing their proportion in the randomized trial. While time-to-event outcomes are often used as the primary endpoint to measure treatment effects for a new therapy in severe diseases like cancer and cardiovascular diseases, there is limited research on biomarker-guided adaptive enrichment trials in this context. Such trials almost always adopt hazard ratio methods for statistical measurement of treatment effects. In contrast, restricted mean survival time (RMST) has gained popularity for analyzing time-to-event outcomes because it offers more straightforward interpretations of treatment effects and does not require the proportional hazard assumption. This paper proposes a two-stage biomarker-guided adaptive RMST design with threshold detection and patient enrichment. We develop sophisticated methods for identifying the optimal biomarker threshold and biomarker-positive subgroup, treatment effect estimators, and approaches for type I error rate, power analysis, and sample size calculation. We present a numerical example of re-designing an oncology trial. An extensive simulation study is conducted to evaluate the performance of the proposed design.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.