Biomarker-guided adaptive enrichment design with threshold detection for clinical trials with time-to-event outcome.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Kaiyuan Hua, Hwanhee Hong, Xiaofei Wang
{"title":"Biomarker-guided adaptive enrichment design with threshold detection for clinical trials with time-to-event outcome.","authors":"Kaiyuan Hua, Hwanhee Hong, Xiaofei Wang","doi":"10.1080/10543406.2025.2489291","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarker-guided designs are increasingly used to evaluate personalized treatments based on patients' biomarker status in Phase II and III clinical trials. With adaptive enrichment, these designs can improve the efficiency of evaluating the treatment effect in biomarker-positive patients by increasing their proportion in the randomized trial. While time-to-event outcomes are often used as the primary endpoint to measure treatment effects for a new therapy in severe diseases like cancer and cardiovascular diseases, there is limited research on biomarker-guided adaptive enrichment trials in this context. Such trials almost always adopt hazard ratio methods for statistical measurement of treatment effects. In contrast, restricted mean survival time (RMST) has gained popularity for analyzing time-to-event outcomes because it offers more straightforward interpretations of treatment effects and does not require the proportional hazard assumption. This paper proposes a two-stage biomarker-guided adaptive RMST design with threshold detection and patient enrichment. We develop sophisticated methods for identifying the optimal biomarker threshold and biomarker-positive subgroup, treatment effect estimators, and approaches for type I error rate, power analysis, and sample size calculation. We present a numerical example of re-designing an oncology trial. An extensive simulation study is conducted to evaluate the performance of the proposed design.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomarker-guided designs are increasingly used to evaluate personalized treatments based on patients' biomarker status in Phase II and III clinical trials. With adaptive enrichment, these designs can improve the efficiency of evaluating the treatment effect in biomarker-positive patients by increasing their proportion in the randomized trial. While time-to-event outcomes are often used as the primary endpoint to measure treatment effects for a new therapy in severe diseases like cancer and cardiovascular diseases, there is limited research on biomarker-guided adaptive enrichment trials in this context. Such trials almost always adopt hazard ratio methods for statistical measurement of treatment effects. In contrast, restricted mean survival time (RMST) has gained popularity for analyzing time-to-event outcomes because it offers more straightforward interpretations of treatment effects and does not require the proportional hazard assumption. This paper proposes a two-stage biomarker-guided adaptive RMST design with threshold detection and patient enrichment. We develop sophisticated methods for identifying the optimal biomarker threshold and biomarker-positive subgroup, treatment effect estimators, and approaches for type I error rate, power analysis, and sample size calculation. We present a numerical example of re-designing an oncology trial. An extensive simulation study is conducted to evaluate the performance of the proposed design.

生物标志物引导的自适应富集设计与阈值检测的临床试验与时间到事件的结果。
在II期和III期临床试验中,生物标志物引导设计越来越多地用于评估基于患者生物标志物状态的个性化治疗。通过适应性富集,这些设计可以提高生物标志物阳性患者在随机试验中的比例,从而提高评估治疗效果的效率。虽然事件发生时间结局通常被用作衡量癌症和心血管疾病等严重疾病新疗法治疗效果的主要终点,但在这种情况下,生物标志物引导的适应性富集试验的研究有限。这类试验几乎总是采用风险比方法对治疗效果进行统计测量。相比之下,限制平均生存时间(RMST)在分析时间到事件的结果方面越来越受欢迎,因为它提供了更直接的治疗效果解释,并且不需要比例风险假设。本文提出了一种两阶段生物标志物引导的自适应RMST设计,具有阈值检测和患者富集。我们开发了复杂的方法来确定最佳生物标志物阈值和生物标志物阳性亚组,治疗效果估计器,以及I型错误率,功率分析和样本量计算的方法。我们提出了一个重新设计肿瘤试验的数值例子。进行了广泛的仿真研究,以评估所提出的设计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信