CellRomeR: an R package for clustering cell migration phenotypes from microscopy data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf069
Iivari Kleino, Mats Perk, António G G Sousa, Markus Linden, Julia Mathlin, Daniel Giesel, Paulina Frolovaite, Sami Pietilä, Sini Junttila, Tomi Suomi, Laura L Elo
{"title":"CellRomeR: an R package for clustering cell migration phenotypes from microscopy data.","authors":"Iivari Kleino, Mats Perk, António G G Sousa, Markus Linden, Julia Mathlin, Daniel Giesel, Paulina Frolovaite, Sami Pietilä, Sini Junttila, Tomi Suomi, Laura L Elo","doi":"10.1093/bioadv/vbaf069","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The analysis of cell migration using time-lapse microscopy typically focuses on track characteristics for classification and statistical evaluation of migration behaviour. However, considerable heterogeneity can be seen in cell morphology and microscope signal intensity features within the migrating cell populations.</p><p><strong>Results: </strong>To utilize this information in cell migration analysis, we introduce here an R package CellRomeR, designed for the phenotypic clustering of cells based on their morphological and motility features from microscopy images. Utilizing machine learning techniques and building on an iterative clustering projection method, CellRomeR offers a new approach to identify heterogeneity in cell populations. The clustering of cells along the migration tracks allows association of distinct cellular phenotypes with different cell migration types and detection of migration patterns associated with stable and unstable cell phenotypes. The user-friendly interface of CellRomeR and multiple visualization options facilitate an in-depth understanding of cellular behaviour, addressing previous challenges in clustering cell trajectories using microscope cell tracking data.</p><p><strong>Availability and implementation: </strong>CellRomeR is available as an R package from https://github.com/elolab/CellRomeR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf069"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The analysis of cell migration using time-lapse microscopy typically focuses on track characteristics for classification and statistical evaluation of migration behaviour. However, considerable heterogeneity can be seen in cell morphology and microscope signal intensity features within the migrating cell populations.

Results: To utilize this information in cell migration analysis, we introduce here an R package CellRomeR, designed for the phenotypic clustering of cells based on their morphological and motility features from microscopy images. Utilizing machine learning techniques and building on an iterative clustering projection method, CellRomeR offers a new approach to identify heterogeneity in cell populations. The clustering of cells along the migration tracks allows association of distinct cellular phenotypes with different cell migration types and detection of migration patterns associated with stable and unstable cell phenotypes. The user-friendly interface of CellRomeR and multiple visualization options facilitate an in-depth understanding of cellular behaviour, addressing previous challenges in clustering cell trajectories using microscope cell tracking data.

Availability and implementation: CellRomeR is available as an R package from https://github.com/elolab/CellRomeR.

CellRomeR:一个R包,用于从显微镜数据中聚集细胞迁移表型。
动机:使用延时显微镜对细胞迁移的分析通常侧重于对迁移行为进行分类和统计评估的轨迹特征。然而,在迁移细胞群内的细胞形态和显微镜信号强度特征中可以看到相当大的异质性。结果:为了在细胞迁移分析中利用这些信息,我们在这里介绍了一个R包CellRomeR,设计用于基于显微镜图像中细胞的形态和运动特征的表型聚类。利用机器学习技术和迭代聚类投影方法,CellRomeR提供了一种识别细胞群体异质性的新方法。沿着迁移轨迹聚集的细胞允许将不同的细胞表型与不同的细胞迁移类型相关联,并检测与稳定和不稳定细胞表型相关的迁移模式。CellRomeR的用户友好界面和多个可视化选项有助于深入了解细胞行为,解决以前使用显微镜细胞跟踪数据聚类细胞轨迹的挑战。可用性和实现:CellRomeR作为R包可从https://github.com/elolab/CellRomeR获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信