{"title":"Targeting myeloid cells for hematological malignancies: the present and future.","authors":"Zihui Guan, Zhengqi Zhang, Kaiyan Wang, Shukai Qiao, Teng Ma, Lina Wu","doi":"10.1186/s40364-025-00775-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hematological malignancies are a diverse group of cancers that originate in the blood and bone marrow and are characterized by the abnormal proliferation and differentiation of hematopoietic cells. Myeloid blasts, which are derived from normal myeloid progenitors, play a central role in these diseases by disrupting hematopoiesis and driving disease progression. In addition, other myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, adapt dynamically to the tumor microenvironment, where they can promote immune evasion and resistance to treatment. This review explores the unique characteristics and pathogenic mechanisms of myeloid blasts, the immunosuppressive roles of myeloid cells, and their complex interactions within the TME. Furthermore, we highlight emerging therapeutic approaches targeting myeloid cells, focusing on strategies to reprogram their functions, inhibit their suppressive effects, or eliminate pathological populations altogether, as well as the latest preclinical and clinical trials advancing these approaches. By integrating insights from these studies, we aim to provide a comprehensive understanding of the roles of myeloid cells in hematological malignancies and their potential as therapeutic targets.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"59"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00775-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hematological malignancies are a diverse group of cancers that originate in the blood and bone marrow and are characterized by the abnormal proliferation and differentiation of hematopoietic cells. Myeloid blasts, which are derived from normal myeloid progenitors, play a central role in these diseases by disrupting hematopoiesis and driving disease progression. In addition, other myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, adapt dynamically to the tumor microenvironment, where they can promote immune evasion and resistance to treatment. This review explores the unique characteristics and pathogenic mechanisms of myeloid blasts, the immunosuppressive roles of myeloid cells, and their complex interactions within the TME. Furthermore, we highlight emerging therapeutic approaches targeting myeloid cells, focusing on strategies to reprogram their functions, inhibit their suppressive effects, or eliminate pathological populations altogether, as well as the latest preclinical and clinical trials advancing these approaches. By integrating insights from these studies, we aim to provide a comprehensive understanding of the roles of myeloid cells in hematological malignancies and their potential as therapeutic targets.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.