Predicting Renal Cell Carcinoma Subtypes and Fuhrman Grading Using Multiphasic CT-Based Texture Analysis and Machine Learning Techniques.

IF 1 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Indian Journal of Radiology and Imaging Pub Date : 2024-12-11 eCollection Date: 2025-04-01 DOI:10.1055/s-0044-1796639
Amit Gupta, Sanil Garg, Neel Yadav, Rohan Raju Dhanakshirur, Kshitiz Jain, Rishi Nayyar, Seema Kaushal, Chandan J Das
{"title":"Predicting Renal Cell Carcinoma Subtypes and Fuhrman Grading Using Multiphasic CT-Based Texture Analysis and Machine Learning Techniques.","authors":"Amit Gupta, Sanil Garg, Neel Yadav, Rohan Raju Dhanakshirur, Kshitiz Jain, Rishi Nayyar, Seema Kaushal, Chandan J Das","doi":"10.1055/s-0044-1796639","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>  The aim of this study is to evaluate computed tomography texture analysis (CTTA) on multiphase CT scans for distinguishing clear cell renal cell carcinoma (ccRCC) from non-ccRCC and predicting Fuhrman's grade in ccRCC using open-source Python libraries. <b>Materials and Methods</b>  Conducted retrospectively, the study included 144 patients with RCCs (108 ccRCCs and 36 non-ccRCCs) who underwent preoperative multiphasic CT. Ninety ccRCCs were categorized into 71 low-grade and 19 high-grade ccRCCs. Tumor was marked on the largest axial tumor slice using \"LabelMe\" across different CT phases. First- and second-order texture features were computed using Python's scipy, numpy, and opencv libraries. Multivariable logistic regression analysis and machine learning (ML) models were used to evaluate CTTA parameters from different CT phases for RCC classification. The best ML model for distinguishing ccRCC and non-ccRCC was externally validated using data from the 2019 Kidney and Kidney Tumor Segmentation Challenge. <b>Results</b>  Entropy in the corticomedullary (CM) phase was the best individual parameter for distinguishing ccRCC from non-ccRCC with (F1 score: 0.83). The support vector machine (SVM) based ML model, incorporating CM phase features, performed the best, with an F1 score of 0.87. External validation for the same model yielded an accuracy of 0.82 and an F1 score of 0.81. ML models and individual texture parameters showed less accuracy for classifying low- versus high-grade ccRCCs, with a maximum F1 score of 0.76 for the CM phase SVM model. Other CT phases yielded inferior results for both classification tasks. <b>Conclusion</b>  CTTA employing open-source Python tools is a viable tool for differentiating ccRCCs from non-ccRCCs and predicting ccRCC grade.</p>","PeriodicalId":51597,"journal":{"name":"Indian Journal of Radiology and Imaging","volume":"35 2","pages":"306-315"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1796639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives  The aim of this study is to evaluate computed tomography texture analysis (CTTA) on multiphase CT scans for distinguishing clear cell renal cell carcinoma (ccRCC) from non-ccRCC and predicting Fuhrman's grade in ccRCC using open-source Python libraries. Materials and Methods  Conducted retrospectively, the study included 144 patients with RCCs (108 ccRCCs and 36 non-ccRCCs) who underwent preoperative multiphasic CT. Ninety ccRCCs were categorized into 71 low-grade and 19 high-grade ccRCCs. Tumor was marked on the largest axial tumor slice using "LabelMe" across different CT phases. First- and second-order texture features were computed using Python's scipy, numpy, and opencv libraries. Multivariable logistic regression analysis and machine learning (ML) models were used to evaluate CTTA parameters from different CT phases for RCC classification. The best ML model for distinguishing ccRCC and non-ccRCC was externally validated using data from the 2019 Kidney and Kidney Tumor Segmentation Challenge. Results  Entropy in the corticomedullary (CM) phase was the best individual parameter for distinguishing ccRCC from non-ccRCC with (F1 score: 0.83). The support vector machine (SVM) based ML model, incorporating CM phase features, performed the best, with an F1 score of 0.87. External validation for the same model yielded an accuracy of 0.82 and an F1 score of 0.81. ML models and individual texture parameters showed less accuracy for classifying low- versus high-grade ccRCCs, with a maximum F1 score of 0.76 for the CM phase SVM model. Other CT phases yielded inferior results for both classification tasks. Conclusion  CTTA employing open-source Python tools is a viable tool for differentiating ccRCCs from non-ccRCCs and predicting ccRCC grade.

Abstract Image

Abstract Image

Abstract Image

基于多相ct的纹理分析和机器学习技术预测肾细胞癌亚型和Fuhrman分级。
本研究的目的是评估计算机断层扫描纹理分析(CTTA)在多相CT扫描中区分透明细胞肾细胞癌(ccRCC)和非ccRCC的价值,并使用开源Python库预测ccRCC的Fuhrman分级。材料与方法回顾性研究144例术前行多期CT检查的rcc患者(有ccrcc患者108例,无ccrcc患者36例)。90个cccccc分为低等级71个,高等级19个。在最大的轴向肿瘤切片上使用“LabelMe”标记肿瘤,跨越不同的CT期。一阶和二阶纹理特征是使用Python的scipy、numpy和opencv库计算的。采用多变量逻辑回归分析和机器学习(ML)模型评估不同CT阶段的CTTA参数,用于RCC分类。使用2019年肾脏和肾脏肿瘤分割挑战赛的数据,对区分ccRCC和非ccRCC的最佳ML模型进行了外部验证。结果皮质髓质(CM)期的熵值是区分ccRCC与非ccRCC的最佳个体参数(F1值为0.83)。结合CM相位特征的基于支持向量机(SVM)的ML模型表现最好,F1得分为0.87。同一模型的外部验证精度为0.82,F1得分为0.81。ML模型和单个纹理参数对低级ccrcc的分类准确率低于高级ccrcc, CM阶段SVM模型的最高F1分数为0.76。其他CT相位对两种分类任务的结果都较差。结论采用开源Python工具的CTTA是鉴别ccRCC与非ccRCC并预测ccRCC分级的可行工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Radiology and Imaging
Indian Journal of Radiology and Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.20
自引率
0.00%
发文量
115
审稿时长
45 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信