Ziwei Lin, Tar Choon Aw, Laurel Jackson, Cheryl Shumin Kow, Gillian Murtagh, Siang Jin Terrance Chua, Arthur Mark Richards, Swee Han Lim
{"title":"Machine learning to risk stratify chest pain patients with non-diagnostic electrocardiogram in an Asian emergency department.","authors":"Ziwei Lin, Tar Choon Aw, Laurel Jackson, Cheryl Shumin Kow, Gillian Murtagh, Siang Jin Terrance Chua, Arthur Mark Richards, Swee Han Lim","doi":"10.47102/annals-acadmedsg.2024232","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Elevated troponin, while essential for diagnosing myocardial infarction, can also be present in non-myocardial infarction conditions. The myocardial-ischaemic-injury-index (MI3) algorithm is a machine learning algorithm that considers age, sex and cardiac troponin I (TnI) results to risk-stratify patients for type 1 myocardial infarction.</p><p><strong>Method: </strong>Patients aged ≥25 years who presented to the emergency department (ED) of Singapore General Hospital with symptoms suggestive of acute coronary syndrome with no diagnostic 12-lead electrocardiogram (ECG) changes were included. Participants had serial ECGs and high-sensitivity troponin assays performed at 0, 2 and 7 hours. The primary outcome was the adjudicated diagnosis of type 1 myocardial infarction at 30 days. We compared the performance of MI3 in predicting the primary outcome with the European Society of Cardiology (ESC) 0/2-hour algorithm as well as the 99th percentile upper reference limit (URL) for TnI.</p><p><strong>Results: </strong>There were 1351 patients included (66.7% male, mean age 56 years), 902 (66.8%) of whom had only 0-hour troponin results and 449 (33.2%) with serial (both 0 and 2-hour) troponin results available. MI3 ruled out type 1 myocardial infarction with a higher sensitivity (98.9, 95% confidence interval [CI] 93.4-99.9%) and similar negative predictive value (NPV) 99.8% (95% CI 98.6-100%) as compared to the ESC strategy. The 99th percentile cut-off strategy had the lowest sensitivity, specificity, positive predictive value and NPV.</p><p><strong>Conclusion: </strong>The MI3 algorithm was accurate in risk stratifying ED patients for myocardial infarction. The 99th percentile URL cut-off was the least accurate in ruling in and out myocardial infarction compared to the other strategies.</p>","PeriodicalId":502093,"journal":{"name":"Annals of the Academy of Medicine, Singapore","volume":"54 4","pages":"219-226"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Academy of Medicine, Singapore","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47102/annals-acadmedsg.2024232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Elevated troponin, while essential for diagnosing myocardial infarction, can also be present in non-myocardial infarction conditions. The myocardial-ischaemic-injury-index (MI3) algorithm is a machine learning algorithm that considers age, sex and cardiac troponin I (TnI) results to risk-stratify patients for type 1 myocardial infarction.
Method: Patients aged ≥25 years who presented to the emergency department (ED) of Singapore General Hospital with symptoms suggestive of acute coronary syndrome with no diagnostic 12-lead electrocardiogram (ECG) changes were included. Participants had serial ECGs and high-sensitivity troponin assays performed at 0, 2 and 7 hours. The primary outcome was the adjudicated diagnosis of type 1 myocardial infarction at 30 days. We compared the performance of MI3 in predicting the primary outcome with the European Society of Cardiology (ESC) 0/2-hour algorithm as well as the 99th percentile upper reference limit (URL) for TnI.
Results: There were 1351 patients included (66.7% male, mean age 56 years), 902 (66.8%) of whom had only 0-hour troponin results and 449 (33.2%) with serial (both 0 and 2-hour) troponin results available. MI3 ruled out type 1 myocardial infarction with a higher sensitivity (98.9, 95% confidence interval [CI] 93.4-99.9%) and similar negative predictive value (NPV) 99.8% (95% CI 98.6-100%) as compared to the ESC strategy. The 99th percentile cut-off strategy had the lowest sensitivity, specificity, positive predictive value and NPV.
Conclusion: The MI3 algorithm was accurate in risk stratifying ED patients for myocardial infarction. The 99th percentile URL cut-off was the least accurate in ruling in and out myocardial infarction compared to the other strategies.