GaussianHead: High-Fidelity Head Avatars With Learnable Gaussian Derivation

Jie Wang;Jiu-Cheng Xie;Xianyan Li;Feng Xu;Chi-Man Pun;Hao Gao
{"title":"GaussianHead: High-Fidelity Head Avatars With Learnable Gaussian Derivation","authors":"Jie Wang;Jiu-Cheng Xie;Xianyan Li;Feng Xu;Chi-Man Pun;Hao Gao","doi":"10.1109/TVCG.2025.3561794","DOIUrl":null,"url":null,"abstract":"Creating lifelike 3D head avatars and generating compelling animations for diverse subjects remain challenging in computer vision. This paper presents GaussianHead, which models the active head based on anisotropic 3D Gaussians. Our method integrates a motion deformation field and a single-resolution tri-plane to capture the head's intricate dynamics and detailed texture. Notably, we introduce a customized derivation scheme for each 3D Gaussian, facilitating the generation of multiple “doppelgangers” through learnable parameters for precise position transformation. This approach enables efficient representation of diverse Gaussian attributes and ensures their precision. Additionally, we propose an inherited derivation strategy for newly added Gaussians to expedite training. Extensive experiments demonstrate GaussianHead's efficacy, achieving high-fidelity visual results with a remarkably compact model size (<inline-formula><tex-math>$\\approx 12$</tex-math></inline-formula> MB). Our method outperforms state-of-the-art alternatives in tasks such as reconstruction, cross-identity reenactment, and novel view synthesis.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 7","pages":"4141-4154"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Creating lifelike 3D head avatars and generating compelling animations for diverse subjects remain challenging in computer vision. This paper presents GaussianHead, which models the active head based on anisotropic 3D Gaussians. Our method integrates a motion deformation field and a single-resolution tri-plane to capture the head's intricate dynamics and detailed texture. Notably, we introduce a customized derivation scheme for each 3D Gaussian, facilitating the generation of multiple “doppelgangers” through learnable parameters for precise position transformation. This approach enables efficient representation of diverse Gaussian attributes and ensures their precision. Additionally, we propose an inherited derivation strategy for newly added Gaussians to expedite training. Extensive experiments demonstrate GaussianHead's efficacy, achieving high-fidelity visual results with a remarkably compact model size ($\approx 12$ MB). Our method outperforms state-of-the-art alternatives in tasks such as reconstruction, cross-identity reenactment, and novel view synthesis.
高斯头像:高保真头像与可学习的高斯推导。
在计算机视觉领域,创建逼真的3D头像和为不同主题生成引人注目的动画仍然具有挑战性。本文提出了一种基于各向异性三维高斯分布的活动头部模型高斯head。我们的方法将运动变形场和单分辨率三平面相结合,以捕获头部复杂的动态和详细的纹理。值得注意的是,我们为每个三维高斯模型引入了定制的推导方案,通过可学习的参数,便于生成多个“二重身”进行精确的位置变换。这种方法能够有效地表示各种高斯属性,并保证它们的精度。此外,我们提出了一种对新增加的高斯函数的继承派生策略,以加快训练速度。大量的实验证明了GaussianHead的有效性,以非常紧凑的模型大小(约12美元MB)实现高保真的视觉结果。我们的方法在重建、跨身份再现和新视图合成等任务中优于最先进的替代方法。源代码可从https://github.com/chiehwangs/gaussian-head获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信