Neuroimaging-based data-driven subtypes of spatiotemporal atrophy due to Parkinson's disease.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-04-16 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf146
Zeena Shawa, Cameron Shand, Beatrice Taylor, Henk W Berendse, Chris Vriend, Tim D van Balkom, Odile A van den Heuvel, Ysbrand D van der Werf, Jiun-Jie Wang, Chih-Chien Tsai, Jason Druzgal, Benjamin T Newman, Tracy R Melzer, Toni L Pitcher, John C Dalrymple-Alford, Tim J Anderson, Gaëtan Garraux, Mario Rango, Petra Schwingenschuh, Melanie Suette, Laura M Parkes, Sarah Al-Bachari, Johannes Klein, Michele T M Hu, Corey T McMillan, Fabrizio Piras, Daniela Vecchio, Clelia Pellicano, Chengcheng Zhang, Kathleen L Poston, Elnaz Ghasemi, Fernando Cendes, Clarissa L Yasuda, Duygu Tosun, Philip Mosley, Paul M Thompson, Neda Jahanshad, Conor Owens-Walton, Emile d'Angremont, Eva M van Heese, Max A Laansma, Andre Altmann, Rimona S Weil, Neil P Oxtoby
{"title":"Neuroimaging-based data-driven subtypes of spatiotemporal atrophy due to Parkinson's disease.","authors":"Zeena Shawa, Cameron Shand, Beatrice Taylor, Henk W Berendse, Chris Vriend, Tim D van Balkom, Odile A van den Heuvel, Ysbrand D van der Werf, Jiun-Jie Wang, Chih-Chien Tsai, Jason Druzgal, Benjamin T Newman, Tracy R Melzer, Toni L Pitcher, John C Dalrymple-Alford, Tim J Anderson, Gaëtan Garraux, Mario Rango, Petra Schwingenschuh, Melanie Suette, Laura M Parkes, Sarah Al-Bachari, Johannes Klein, Michele T M Hu, Corey T McMillan, Fabrizio Piras, Daniela Vecchio, Clelia Pellicano, Chengcheng Zhang, Kathleen L Poston, Elnaz Ghasemi, Fernando Cendes, Clarissa L Yasuda, Duygu Tosun, Philip Mosley, Paul M Thompson, Neda Jahanshad, Conor Owens-Walton, Emile d'Angremont, Eva M van Heese, Max A Laansma, Andre Altmann, Rimona S Weil, Neil P Oxtoby","doi":"10.1093/braincomms/fcaf146","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease is the second most common neurodegenerative disease. Despite this, there are no robust biomarkers to predict progression, and understanding of disease mechanisms is limited. We used the Subtype and Stage Inference algorithm to characterize Parkinson's disease heterogeneity in terms of spatiotemporal subtypes of macroscopic atrophy detectable on T1-weighted MRI-a successful approach used in other neurodegenerative diseases. We trained the model on covariate-adjusted cortical thicknesses and subcortical volumes from the largest known T1-weighted MRI dataset in Parkinson's disease, Enhancing Neuroimaging through Meta-Analysis consortium Parkinson's Disease dataset (<i>n</i> = 1100 cases). We tested the model by analyzing clinical progression over up to 9 years in openly-available data from people with Parkinson's disease from the Parkinson's Progression Markers Initiative (<i>n</i> = 584 cases). Under cross-validation, our analysis supported three spatiotemporal atrophy subtypes, named for the location of the earliest affected regions as: '<i>Subcortical</i>' (<i>n</i> = 359, 33%), '<i>Limbic</i>' (<i>n</i> = 237, 22%) and '<i>Cortical</i>' (<i>n</i> = 187, 17%). A fourth subgroup having sub-threshold/no atrophy was named '<i>Sub-threshold atrophy</i>' (<i>n</i> = 317, 29%). Statistical differences in clinical scores existed between the no-atrophy subgroup and the atrophy subtypes, but not among the atrophy subtypes. This suggests that the prime T1-weighted MRI delineator of clinical differences in Parkinson's disease is atrophy severity, rather than atrophy location. Future work on unravelling the biological and clinical heterogeneity of Parkinson's disease should leverage more sensitive neuroimaging modalities and multimodal data.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 2","pages":"fcaf146"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease is the second most common neurodegenerative disease. Despite this, there are no robust biomarkers to predict progression, and understanding of disease mechanisms is limited. We used the Subtype and Stage Inference algorithm to characterize Parkinson's disease heterogeneity in terms of spatiotemporal subtypes of macroscopic atrophy detectable on T1-weighted MRI-a successful approach used in other neurodegenerative diseases. We trained the model on covariate-adjusted cortical thicknesses and subcortical volumes from the largest known T1-weighted MRI dataset in Parkinson's disease, Enhancing Neuroimaging through Meta-Analysis consortium Parkinson's Disease dataset (n = 1100 cases). We tested the model by analyzing clinical progression over up to 9 years in openly-available data from people with Parkinson's disease from the Parkinson's Progression Markers Initiative (n = 584 cases). Under cross-validation, our analysis supported three spatiotemporal atrophy subtypes, named for the location of the earliest affected regions as: 'Subcortical' (n = 359, 33%), 'Limbic' (n = 237, 22%) and 'Cortical' (n = 187, 17%). A fourth subgroup having sub-threshold/no atrophy was named 'Sub-threshold atrophy' (n = 317, 29%). Statistical differences in clinical scores existed between the no-atrophy subgroup and the atrophy subtypes, but not among the atrophy subtypes. This suggests that the prime T1-weighted MRI delineator of clinical differences in Parkinson's disease is atrophy severity, rather than atrophy location. Future work on unravelling the biological and clinical heterogeneity of Parkinson's disease should leverage more sensitive neuroimaging modalities and multimodal data.

帕金森氏病所致时空萎缩的神经影像学数据驱动亚型
帕金森氏症是第二常见的神经退行性疾病。尽管如此,没有可靠的生物标志物来预测进展,对疾病机制的了解也很有限。我们使用亚型和分期推断算法,根据t1加权mri可检测到的宏观萎缩的时空亚型来表征帕金森病的异质性,这是一种用于其他神经退行性疾病的成功方法。我们使用协变量调整后的皮层厚度和皮层下体积来训练模型,这些数据来自已知最大的帕金森病t1加权MRI数据集,通过meta分析联盟帕金森病数据集增强神经成像(n = 1100例)。我们通过分析来自帕金森进展标志物倡议(n = 584例)的帕金森病患者长达9年的公开数据来测试该模型。在交叉验证下,我们的分析支持三种时空萎缩亚型,根据最早受影响区域的位置命名为:“皮层下”(n = 359%, 33%)、“边缘”(n = 237%, 22%)和“皮层”(n = 187%, 17%)。第四个亚组有低于阈值或没有萎缩被命名为“亚阈值萎缩”(n = 317, 29%)。临床评分在无萎缩亚组与萎缩亚型之间存在统计学差异,而在萎缩亚型之间无统计学差异。这表明,帕金森病临床差异的主要t1加权MRI描述是萎缩严重程度,而不是萎缩位置。未来研究帕金森病的生物学和临床异质性的工作应该利用更敏感的神经成像方式和多模态数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信