Leveraging interictal multimodal features and graph neural networks for automated planning of epilepsy surgery.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-04-16 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf140
Petr Nejedly, Valentina Hrtonova, Martin Pail, Jan Cimbalnik, Pavel Daniel, Vojtech Travnicek, Irena Dolezalova, Filip Mivalt, Vaclav Kremen, Pavel Jurak, Gregory A Worrell, Birgit Frauscher, Petr Klimes, Milan Brazdil
{"title":"Leveraging interictal multimodal features and graph neural networks for automated planning of epilepsy surgery.","authors":"Petr Nejedly, Valentina Hrtonova, Martin Pail, Jan Cimbalnik, Pavel Daniel, Vojtech Travnicek, Irena Dolezalova, Filip Mivalt, Vaclav Kremen, Pavel Jurak, Gregory A Worrell, Birgit Frauscher, Petr Klimes, Milan Brazdil","doi":"10.1093/braincomms/fcaf140","DOIUrl":null,"url":null,"abstract":"<p><p>Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne's University Hospital (Brno, Czech Republic), comprising 31 patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated a significantly better (<i>P</i> < 0.05, Mann-Whitney-U test) area under the precision-recall curve in patients with good outcomes (area under the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network proposed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative therapeutic targets. We show that topology-aware GNNs significantly outperformed (<i>P</i> < 0.05, Wilcoxon signed-rank test) traditional neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology into predictive models. These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical team during the planning process.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 3","pages":"fcaf140"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne's University Hospital (Brno, Czech Republic), comprising 31 patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated a significantly better (P < 0.05, Mann-Whitney-U test) area under the precision-recall curve in patients with good outcomes (area under the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network proposed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative therapeutic targets. We show that topology-aware GNNs significantly outperformed (P < 0.05, Wilcoxon signed-rank test) traditional neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology into predictive models. These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical team during the planning process.

利用间隔多模态特征和图神经网络实现癫痫手术的自动规划。
准确定位癫痫区是关键的计划微创手术在耐药癫痫。在这里,我们提出了一个图神经网络(GNN)框架,该框架集成了颅内脑电特征、电极拓扑和MRI特征,以实现癫痫手术计划的自动化。我们对80名在圣安妮大学医院(Brno, Czech Republic)接受治疗的耐药癫痫患者的数据集进行了回顾性评估,其中31名患者术后预后良好(Engel I), 49名预后较差(Engel II-IV)。结果良好的患者的GNN预测精度-召回曲线下面积(精确-召回曲线下面积:0.69)明显优于结果不佳的患者(精确-召回曲线下面积:0.33)(P < 0.05, Mann-Whitney-U检验),表明该模型捕获了成功病例的临床相关目标。在预后不佳的患者中,图神经网络提出了偏离原始临床计划的替代干预点,突出了其识别替代治疗靶点的潜力。我们发现,在使用相同的颅内脑电图特征时,拓扑感知的gnn显著优于传统神经网络(P < 0.05, Wilcoxon符号秩检验),强调了将植入拓扑纳入预测模型的重要性。这些发现揭示了gnn自动建议癫痫手术目标的潜力,这可以在计划过程中协助临床团队。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信