Mapping the attractor landscape of Boolean networks with biobalm.

Van-Giang Trinh, Kyu Hyong Park, Samuel Pastva, Jordan C Rozum
{"title":"Mapping the attractor landscape of Boolean networks with biobalm.","authors":"Van-Giang Trinh, Kyu Hyong Park, Samuel Pastva, Jordan C Rozum","doi":"10.1093/bioinformatics/btaf280","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Boolean networks are popular dynamical models of cellular processes in systems biology. Their attractors model phenotypes that arise from the interplay of key regulatory subcircuits. A succession diagram (SD) describes this interplay in a discrete analog of Waddington's epigenetic attractor landscape that allows for fast identification of attractors and attractor control strategies. Efficient computational tools for studying SDs are essential for the understanding of Boolean attractor landscapes and connecting them to their biological functions.</p><p><strong>Results: </strong>We present a new approach to SD construction for asynchronously updated Boolean networks, implemented in the biologist's Boolean attractor landscape mapper, biobalm. We compare biobalm to similar tools and find a substantial performance increase in SD construction, attractor identification, and attractor control. We perform the most comprehensive comparative analysis to date of the SD structure in experimentally-validated Boolean models of cell processes and random ensembles. We find that random models (including critical Kauffman networks) have relatively small SDs, indicating simple decision structures. In contrast, nonrandom models from the literature are enriched in extremely large SDs, indicating an abundance of decision points and suggesting the presence of complex Waddington landscapes in nature.</p><p><strong>Availability and implementation: </strong>The tool biobalm is available online at https://github.com/jcrozum/biobalm. Further data, scripts for testing, analysis, and figure generation are available online at https://github.com/jcrozum/biobalm-analysis and in the reproducibility artefact at https://doi.org/10.5281/zenodo.13854760.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Boolean networks are popular dynamical models of cellular processes in systems biology. Their attractors model phenotypes that arise from the interplay of key regulatory subcircuits. A succession diagram (SD) describes this interplay in a discrete analog of Waddington's epigenetic attractor landscape that allows for fast identification of attractors and attractor control strategies. Efficient computational tools for studying SDs are essential for the understanding of Boolean attractor landscapes and connecting them to their biological functions.

Results: We present a new approach to SD construction for asynchronously updated Boolean networks, implemented in the biologist's Boolean attractor landscape mapper, biobalm. We compare biobalm to similar tools and find a substantial performance increase in SD construction, attractor identification, and attractor control. We perform the most comprehensive comparative analysis to date of the SD structure in experimentally-validated Boolean models of cell processes and random ensembles. We find that random models (including critical Kauffman networks) have relatively small SDs, indicating simple decision structures. In contrast, nonrandom models from the literature are enriched in extremely large SDs, indicating an abundance of decision points and suggesting the presence of complex Waddington landscapes in nature.

Availability and implementation: The tool biobalm is available online at https://github.com/jcrozum/biobalm. Further data, scripts for testing, analysis, and figure generation are available online at https://github.com/jcrozum/biobalm-analysis and in the reproducibility artefact at https://doi.org/10.5281/zenodo.13854760.

用生物弹绘制布尔网络的吸引子景观。
动机:布尔网络是系统生物学中流行的细胞过程动力学模型。它们的吸引子模型是由关键调控亚回路的相互作用产生的表型。在Waddington的表观遗传吸引子景观的离散模拟中,演取图描述了这种相互作用,可以快速识别吸引子和吸引子控制策略。研究演替图的有效计算工具对于理解布尔吸引子景观并将其与生物功能联系起来至关重要。结果:我们提出了一种新的方法来构建异步更新布尔网络的演替图,该方法在生物学家的布尔吸引器景观映射器biobalm中实现。我们将biobalm与类似的工具进行了比较,发现在演化图构建、吸引子识别和吸引子控制方面的性能有了显著提高。我们在实验验证的细胞过程和随机集成的布尔模型中对演替图结构进行了迄今为止最全面的比较分析。我们发现随机模型(包括临界考夫曼网络)具有相对较小的演替图,表明简单的决策结构。相比之下,文献中的非随机模型丰富了超大的演替图,表明决策点丰富,表明自然界中存在复杂的沃丁顿景观。可用性和实施:工具biobalm可在https://github.com/jcrozum/biobalm上在线获得。进一步的数据、测试、分析和图形生成脚本可在https://github.com/jcrozum/biobalm-analysis和https://doi.org/10.5281/zenodo.13854760.Contact的可重复性工件上获得,补充信息:giang.trinh91@gmail.com (V.G.T.)、xpastva@fi.muni.cz (S.P.)、jrozum@binghamton.edu (J.C.R.);补充文本可通过生物信息学在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信