{"title":"Development and validation of a simple-to-use nomogram for predicting severe scrub typhus in children.","authors":"Yonghan Luo, Yan Guo, Yanchun Wang, Xiaotao Yang","doi":"10.1371/journal.pntd.0013090","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and validate a simple-to-use nomogram for predicting severe scrub typhus (ST) in children.</p><p><strong>Methods: </strong>A retrospective study of 256 patients with ST was performed at the Kunming Children's Hospital from January 2015 to November 2022. ALL patients were divided into a common and severe group based on the severity of the disease. A least absolute shrinkage and selection operator (LASSO) regression model was used to identify the optimal predictors, and the predictive nomogram was plotted by multivariable logistic regression. The nomogram was assessed by calibration, discrimination, and clinical utility.</p><p><strong>Results: </strong>LASSO regression analysis identified that hemoglobin count (Hb), platelet count (PLT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatine kinase isoenzyme MB(CK-MB) and hypoproteinemia were the optimal predictors for severe ST. The nomogram was plotted by the six predictors. The area under the receiver operating characteristic (ROC) curve of the nomogram was 0.870(95% CI = 0.812 ~ 0.928) in training set and 0.839(95% CI = 0.712 ~ 0.967) in validation set. The calibration curve demonstrated that the nomogram was well-fitted, and the decision curve analysis (DCA) showed that the nomogram was clinically beneficial.</p><p><strong>Conclusions: </strong>This study developed and validated a simple-to-use nomogram for predicting severe ST in children based on six predictors including Hb, PLT, LDH, BUN, CK-MB and hypoproteinemia, demonstrating excellent predictive accuracy for the data, though external and prospective validation is required to assess its potential clinical utility.</p>","PeriodicalId":49000,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"19 5","pages":"e0013090"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0013090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop and validate a simple-to-use nomogram for predicting severe scrub typhus (ST) in children.
Methods: A retrospective study of 256 patients with ST was performed at the Kunming Children's Hospital from January 2015 to November 2022. ALL patients were divided into a common and severe group based on the severity of the disease. A least absolute shrinkage and selection operator (LASSO) regression model was used to identify the optimal predictors, and the predictive nomogram was plotted by multivariable logistic regression. The nomogram was assessed by calibration, discrimination, and clinical utility.
Results: LASSO regression analysis identified that hemoglobin count (Hb), platelet count (PLT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatine kinase isoenzyme MB(CK-MB) and hypoproteinemia were the optimal predictors for severe ST. The nomogram was plotted by the six predictors. The area under the receiver operating characteristic (ROC) curve of the nomogram was 0.870(95% CI = 0.812 ~ 0.928) in training set and 0.839(95% CI = 0.712 ~ 0.967) in validation set. The calibration curve demonstrated that the nomogram was well-fitted, and the decision curve analysis (DCA) showed that the nomogram was clinically beneficial.
Conclusions: This study developed and validated a simple-to-use nomogram for predicting severe ST in children based on six predictors including Hb, PLT, LDH, BUN, CK-MB and hypoproteinemia, demonstrating excellent predictive accuracy for the data, though external and prospective validation is required to assess its potential clinical utility.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).