Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity Learning.

Jiaqi Wang, Chenxu Zhao, Lingjuan Lyu, Quanzeng You, Mengdi Huai, Fenglong Ma
{"title":"Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity Learning.","authors":"Jiaqi Wang, Chenxu Zhao, Lingjuan Lyu, Quanzeng You, Mengdi Huai, Fenglong Ma","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents FedType, a simple yet pioneering framework designed to fill research gaps in heterogeneous model aggregation within federated learning (FL). FedType introduces small identical proxy models for clients, serving as agents for information exchange, ensuring model security, and achieving efficient communication simultaneously. To transfer knowledge between large private and small proxy models on clients, we propose a novel uncertainty-based asymmetrical reciprocity learning method, eliminating the need for any public data. Comprehensive experiments conducted on benchmark datasets demonstrate the efficacy and generalization ability of FedType across diverse settings. Our approach redefines federated learning paradigms by bridging model heterogeneity, eliminating reliance on public data, prioritizing client privacy, and reducing communication costs.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"235 ","pages":"52290-52308"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents FedType, a simple yet pioneering framework designed to fill research gaps in heterogeneous model aggregation within federated learning (FL). FedType introduces small identical proxy models for clients, serving as agents for information exchange, ensuring model security, and achieving efficient communication simultaneously. To transfer knowledge between large private and small proxy models on clients, we propose a novel uncertainty-based asymmetrical reciprocity learning method, eliminating the need for any public data. Comprehensive experiments conducted on benchmark datasets demonstrate the efficacy and generalization ability of FedType across diverse settings. Our approach redefines federated learning paradigms by bridging model heterogeneity, eliminating reliance on public data, prioritizing client privacy, and reducing communication costs.

基于不确定性的非对称互惠学习桥接联邦学习模型异质性。
本文介绍了FedType,这是一个简单但具有开创性的框架,旨在填补联邦学习(FL)中异构模型聚合的研究空白。FedType为客户端引入了小型的相同代理模型,作为信息交换的代理,保证了模型的安全性,同时实现了高效的通信。为了在客户端大型私有和小型代理模型之间传递知识,我们提出了一种新的基于不确定性的非对称互惠学习方法,消除了对任何公共数据的需要。在基准数据集上进行的综合实验证明了FedType在不同设置下的有效性和泛化能力。我们的方法通过桥接模型异构性、消除对公共数据的依赖、优先考虑客户端隐私和降低通信成本来重新定义联邦学习范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信