{"title":"Energy estimation methods for positron emission tomography detectors composed of multiple scintillators.","authors":"Hyeong Seok Shim, Min Jeong Cho, Jae Sung Lee","doi":"10.1007/s13534-025-00464-w","DOIUrl":null,"url":null,"abstract":"<p><p>The performance and image quality of positron emission tomography (PET) systems can be enhanced by strategically employing multiple different scintillators, particularly those with different decay times. Two cutting-edge PET detector technologies employing different scintillators with different decay times are the phoswich detector and the emerging metascintillator. In PET imaging, accurate and precise energy measurement is important for effectively rejecting scattered gamma-rays and estimating scatter distribution. However, traditional measures of light output, such as amplitude or integration values of photosensor output pulses, cannot accurately indicate the deposit energy of gamma-rays across multiple scintillators. To address these issues, this study explores two methods for energy estimation in PET detectors that employ multiple scintillators. The first method uses pseudo-inverse matrix generated from the unique pulse profile of each crystal, while the second employs an artificial neural network (ANN) to estimate the energy deposited in each crystal. The effectiveness of the proposed methods was experimentally evaluated using three heavy and dense inorganic scintillation crystals (BGO, LGSO, and GAGG) and three fast plastic scintillators (EJ200, EJ224, and EJ232). The energy estimation method employing ANNs consistently demonstrated superior accuracy across all crystal combinations when compared to the approach utilizing the pseudo-inverse matrix. In the pseudo-inverse matrix approach, there is a negligible difference in accuracy when applying integral-based energy labels as opposed to amplitude-based energy labels. On the other hand, in ANN approach, employing integral-based energy labels consistently outperforms the use of amplitude-based energy labels. This study contributes to the advancement of PET detector technology by proposing and evaluating two methods for estimating the energy in the detector using multiple scintillators. The ANN approach appears to be a promising solution for improving the accuracy of energy estimation, addressing challenges posed by mixed scintillation pulses.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 3","pages":"489-496"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00464-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The performance and image quality of positron emission tomography (PET) systems can be enhanced by strategically employing multiple different scintillators, particularly those with different decay times. Two cutting-edge PET detector technologies employing different scintillators with different decay times are the phoswich detector and the emerging metascintillator. In PET imaging, accurate and precise energy measurement is important for effectively rejecting scattered gamma-rays and estimating scatter distribution. However, traditional measures of light output, such as amplitude or integration values of photosensor output pulses, cannot accurately indicate the deposit energy of gamma-rays across multiple scintillators. To address these issues, this study explores two methods for energy estimation in PET detectors that employ multiple scintillators. The first method uses pseudo-inverse matrix generated from the unique pulse profile of each crystal, while the second employs an artificial neural network (ANN) to estimate the energy deposited in each crystal. The effectiveness of the proposed methods was experimentally evaluated using three heavy and dense inorganic scintillation crystals (BGO, LGSO, and GAGG) and three fast plastic scintillators (EJ200, EJ224, and EJ232). The energy estimation method employing ANNs consistently demonstrated superior accuracy across all crystal combinations when compared to the approach utilizing the pseudo-inverse matrix. In the pseudo-inverse matrix approach, there is a negligible difference in accuracy when applying integral-based energy labels as opposed to amplitude-based energy labels. On the other hand, in ANN approach, employing integral-based energy labels consistently outperforms the use of amplitude-based energy labels. This study contributes to the advancement of PET detector technology by proposing and evaluating two methods for estimating the energy in the detector using multiple scintillators. The ANN approach appears to be a promising solution for improving the accuracy of energy estimation, addressing challenges posed by mixed scintillation pulses.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.