Felix J Gössl, Pierfrancesco Polo, Frederik Helmprobst, André Menzenbach, Alexander Visekruna, Thomas M Gress, Till Adhikary, Matthias Lauth
{"title":"ER-phagy mediates the anti-tumoral synergism between HDAC inhibition and chemotherapy.","authors":"Felix J Gössl, Pierfrancesco Polo, Frederik Helmprobst, André Menzenbach, Alexander Visekruna, Thomas M Gress, Till Adhikary, Matthias Lauth","doi":"10.1186/s12964-025-02198-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histone deacetylase inhibitors (HDACi) are clinically approved drugs for the treatment of hematological malignancies synergizing with chemotherapy. However, despite the long history of HDACi, the mechanistic underpinnings of this synergism have remained unclear.</p><p><strong>Methods: </strong>Using transmission electron microscopy, we identified autophagy and ER-stress in HDACi-treated cells. We quantified ER-phagy and ER-stress with reporter systems by using 3D-deconvolution microscopy and flow cytometry. We complemented these data with qPCR and Western blot results. Apoptosis rates were assessed using a caspase assay and flow cytometry, and large public datasets were utilized.</p><p><strong>Results: </strong>HDAC blockade results in specific upregulation of the selective autophagy receptor FAM134B (RETREG1) and the induction of ER-phagy. Combined with the chemotherapeutic drug Gemcitabine, this results in subsequent elevated ER-stress levels and apoptosis. Inhibiting the distinct ER-stress branches fully rescues this process. Broadening the scope of these findings, certain non-HDAC-inhibitory and clinically approved compounds like Loperamide and Nelfinavir are able to induce FAM134B and could hence constitute novel Gemcitabine-synergizing molecules. Additionally, pancreatic cancer patients with high FAM134B expression have significantly longer survival rates under chemotherapy.</p><p><strong>Conclusion: </strong>In summary, we provide mechanistic evidence for ER-phagy playing a hitherto unknown central role in the clinical synergy between HDACi and chemotherapy.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"202"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02198-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Histone deacetylase inhibitors (HDACi) are clinically approved drugs for the treatment of hematological malignancies synergizing with chemotherapy. However, despite the long history of HDACi, the mechanistic underpinnings of this synergism have remained unclear.
Methods: Using transmission electron microscopy, we identified autophagy and ER-stress in HDACi-treated cells. We quantified ER-phagy and ER-stress with reporter systems by using 3D-deconvolution microscopy and flow cytometry. We complemented these data with qPCR and Western blot results. Apoptosis rates were assessed using a caspase assay and flow cytometry, and large public datasets were utilized.
Results: HDAC blockade results in specific upregulation of the selective autophagy receptor FAM134B (RETREG1) and the induction of ER-phagy. Combined with the chemotherapeutic drug Gemcitabine, this results in subsequent elevated ER-stress levels and apoptosis. Inhibiting the distinct ER-stress branches fully rescues this process. Broadening the scope of these findings, certain non-HDAC-inhibitory and clinically approved compounds like Loperamide and Nelfinavir are able to induce FAM134B and could hence constitute novel Gemcitabine-synergizing molecules. Additionally, pancreatic cancer patients with high FAM134B expression have significantly longer survival rates under chemotherapy.
Conclusion: In summary, we provide mechanistic evidence for ER-phagy playing a hitherto unknown central role in the clinical synergy between HDACi and chemotherapy.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.