{"title":"Temporal and habitat adaptations in Drosophila subobscura populations: changes in chromosomal inversions.","authors":"Goran Zivanovic, Concepció Arenas, Francesc Mestres","doi":"10.1007/s10709-025-00232-9","DOIUrl":null,"url":null,"abstract":"<p><p>In insects, chromosomal inversion polymorphism has been related with different adaptations, including global warming. Regarding this environmental change, Drosophila subobscura stands out as a useful model species due to its rich inversion polymorphism covering the whole karyotype. The main aims of this research were to analyze the differentiation of this polymorphism in Jastrebac Mt. (Serbia) depending on the different habitats (beech and oak forests) and over time. These latter changes were studied in relation to climatic variables (mean, minimum and maximum temperatures, humidity and rainfall). Microdifferentiation was observed between beech and oak forests, mainly for the A and O chromosomes. However, the changes over time turned out to be larger than those due to habitat. In Jastrebac Mt., temperatures increased over time, with this increase being significant for mean and minimum one. The Multidimensional Scaling analysis showed a relation between chromosomal inversions and temperatures (mainly minimum) in Jastrebac Mt. and other Serbian populations of D. subobscura. In beech forest of Jastrebac Mt., the Chromosomal Thermal Index increased over time from 1990 to 1994, but showing a possible stabilization in 2023. This result was observed in other studied Serbian populations. Although those are preliminary results, it might hypothesize that there may be a threshold for the action of natural selection, increasing 'warm' adaptive inversions and decreasing 'cold' ones. The possible reasons for this hypothesis are also discussed.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"153 1","pages":"16"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-025-00232-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In insects, chromosomal inversion polymorphism has been related with different adaptations, including global warming. Regarding this environmental change, Drosophila subobscura stands out as a useful model species due to its rich inversion polymorphism covering the whole karyotype. The main aims of this research were to analyze the differentiation of this polymorphism in Jastrebac Mt. (Serbia) depending on the different habitats (beech and oak forests) and over time. These latter changes were studied in relation to climatic variables (mean, minimum and maximum temperatures, humidity and rainfall). Microdifferentiation was observed between beech and oak forests, mainly for the A and O chromosomes. However, the changes over time turned out to be larger than those due to habitat. In Jastrebac Mt., temperatures increased over time, with this increase being significant for mean and minimum one. The Multidimensional Scaling analysis showed a relation between chromosomal inversions and temperatures (mainly minimum) in Jastrebac Mt. and other Serbian populations of D. subobscura. In beech forest of Jastrebac Mt., the Chromosomal Thermal Index increased over time from 1990 to 1994, but showing a possible stabilization in 2023. This result was observed in other studied Serbian populations. Although those are preliminary results, it might hypothesize that there may be a threshold for the action of natural selection, increasing 'warm' adaptive inversions and decreasing 'cold' ones. The possible reasons for this hypothesis are also discussed.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.