Bi-level identification of governing equations for nonlinear physical systems.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nature computational science Pub Date : 2025-06-01 Epub Date: 2025-05-09 DOI:10.1038/s43588-025-00804-x
Zeyu Li, Huining Yuan, Wang Han, Yimin Hou, Hongjue Li, Haidong Ding, Zhiguo Jiang, Lijun Yang
{"title":"Bi-level identification of governing equations for nonlinear physical systems.","authors":"Zeyu Li, Huining Yuan, Wang Han, Yimin Hou, Hongjue Li, Haidong Ding, Zhiguo Jiang, Lijun Yang","doi":"10.1038/s43588-025-00804-x","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying governing equations from observational data is crucial for understanding nonlinear physical systems but remains challenging due to the risk of overfitting. Here we introduce the Bi-Level Identification of Equations (BILLIE) framework, which simultaneously discovers and validates equations using a hierarchical optimization strategy. The policy gradient algorithm of reinforcement learning is leveraged to achieve the bi-level optimization. We demonstrate BILLIE's superior performance through comparisons with baseline methods in canonical nonlinear systems such as turbulent flows and three-body systems. Furthermore, we apply the BILLIE framework to discover RNA and protein velocity equations directly from single-cell sequencing data. The equations identified by BILLIE outperform empirical models in predicting cellular differentiation states, underscoring BILLIE's potential to reveal fundamental physical laws across a wide range of scientific fields.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":"456-466"},"PeriodicalIF":12.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00804-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying governing equations from observational data is crucial for understanding nonlinear physical systems but remains challenging due to the risk of overfitting. Here we introduce the Bi-Level Identification of Equations (BILLIE) framework, which simultaneously discovers and validates equations using a hierarchical optimization strategy. The policy gradient algorithm of reinforcement learning is leveraged to achieve the bi-level optimization. We demonstrate BILLIE's superior performance through comparisons with baseline methods in canonical nonlinear systems such as turbulent flows and three-body systems. Furthermore, we apply the BILLIE framework to discover RNA and protein velocity equations directly from single-cell sequencing data. The equations identified by BILLIE outperform empirical models in predicting cellular differentiation states, underscoring BILLIE's potential to reveal fundamental physical laws across a wide range of scientific fields.

非线性物理系统控制方程的双水平辨识。
从观测数据中识别控制方程对于理解非线性物理系统至关重要,但由于过度拟合的风险,仍然具有挑战性。在这里,我们介绍了双级方程识别(BILLIE)框架,该框架使用分层优化策略同时发现和验证方程。利用强化学习的策略梯度算法实现双级优化。通过与基准方法在典型非线性系统(如湍流和三体系统)中的比较,我们证明了BILLIE的优越性能。此外,我们应用BILLIE框架直接从单细胞测序数据中发现RNA和蛋白质速度方程。由BILLIE确定的方程在预测细胞分化状态方面优于经验模型,强调BILLIE在广泛的科学领域揭示基本物理定律的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信