Machine Learning Models of Early Longitudinal Toxicity Trajectories Predict Cetuximab Concentration and Metastatic Colorectal Cancer Survival in the Canadian Cancer Trials Group/AGITG CO.17/20 Trials.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-04-01 Epub Date: 2025-04-11 DOI:10.1200/CCI.24.00114
Danielle Lilly Nicholls, Maria C Xu, Luna Zhan, Divya Sharma, Katrina Hueniken, Kaitlyn Chiasson, Mary Wahba, M Catherine Brown, Benjamin Grant, Jeremy Shapiro, Christos S Karapetis, John Simes, Derek Jonker, Dongsheng Tu, Christopher O'Callaghan, Eric Chen, Geoffrey Liu
{"title":"Machine Learning Models of Early Longitudinal Toxicity Trajectories Predict Cetuximab Concentration and Metastatic Colorectal Cancer Survival in the Canadian Cancer Trials Group/AGITG CO.17/20 Trials.","authors":"Danielle Lilly Nicholls, Maria C Xu, Luna Zhan, Divya Sharma, Katrina Hueniken, Kaitlyn Chiasson, Mary Wahba, M Catherine Brown, Benjamin Grant, Jeremy Shapiro, Christos S Karapetis, John Simes, Derek Jonker, Dongsheng Tu, Christopher O'Callaghan, Eric Chen, Geoffrey Liu","doi":"10.1200/CCI.24.00114","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cetuximab (CET), targeting the epidermal growth factor receptor, is a systemic treatment option for patients with colorectal cancer. One known predictive factor for CET efficacy is the presence of CET-related rash; other putative toxicity factors include fatigue and nausea. Analysis of early CET-associated toxicities may reveal patient subpopulations that clinically benefit from long-term CET treatment.</p><p><strong>Methods: </strong>We analyzed data from CO.20 (ClinicalTrials.gov identifier: NCT00640471) trial arms, CET + brivanib alaninate (BRIV) (n = 376) and CET + placebo (n = 374), and CO.17 (ClinicalTrials.gov identifier: NCT00079066) trial arms, CET (+best supportive care [BSC]; n = 287) and BSC only (n = 285). Patients were clustered into subpopulations using KmL3D, a machine learning method, to analyze 14 joint longitudinal toxicity trajectories from weeks 0 to 8 of treatment. Landmark survival analyses were performed from 8 weeks after treatment initiation. Regression analyses assessed the relationship between subpopulations and plasma CET concentrations. Three supervised machine learning models were developed to assign patients in the CO.20-CET trial arm into subpopulations, which were then validated using CO.20-CET-BRIV and CO.17-CET trial arm data.</p><p><strong>Results: </strong>Joint longitudinal toxicity clustering revealed dichotomous high- and low-toxicity clusters, with all CET-containing arms showing consistent toxicity trajectories and characteristics. High-toxicity clusters were associated with male predilection, fewer metastatic sites, fewer colon-only primaries, and higher body mass indices. In CO.20 trial samples, higher toxicity clusters were associated with improved overall survival and progression-free survival outcomes (adjusted hazard ratios ranging from 2.21 to 4.36) and higher CET concentrations (<i>P</i> = .003). The random forest predictive model performed the best, with an AUC of 0.981 (0.963-0.999).</p><p><strong>Conclusion: </strong>We used an innovative machine learning approach to analyze longitudinal joint drug toxicities, demonstrating their role in predicting patient outcomes through a putative pharmacokinetic mechanism.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400114"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Cetuximab (CET), targeting the epidermal growth factor receptor, is a systemic treatment option for patients with colorectal cancer. One known predictive factor for CET efficacy is the presence of CET-related rash; other putative toxicity factors include fatigue and nausea. Analysis of early CET-associated toxicities may reveal patient subpopulations that clinically benefit from long-term CET treatment.

Methods: We analyzed data from CO.20 (ClinicalTrials.gov identifier: NCT00640471) trial arms, CET + brivanib alaninate (BRIV) (n = 376) and CET + placebo (n = 374), and CO.17 (ClinicalTrials.gov identifier: NCT00079066) trial arms, CET (+best supportive care [BSC]; n = 287) and BSC only (n = 285). Patients were clustered into subpopulations using KmL3D, a machine learning method, to analyze 14 joint longitudinal toxicity trajectories from weeks 0 to 8 of treatment. Landmark survival analyses were performed from 8 weeks after treatment initiation. Regression analyses assessed the relationship between subpopulations and plasma CET concentrations. Three supervised machine learning models were developed to assign patients in the CO.20-CET trial arm into subpopulations, which were then validated using CO.20-CET-BRIV and CO.17-CET trial arm data.

Results: Joint longitudinal toxicity clustering revealed dichotomous high- and low-toxicity clusters, with all CET-containing arms showing consistent toxicity trajectories and characteristics. High-toxicity clusters were associated with male predilection, fewer metastatic sites, fewer colon-only primaries, and higher body mass indices. In CO.20 trial samples, higher toxicity clusters were associated with improved overall survival and progression-free survival outcomes (adjusted hazard ratios ranging from 2.21 to 4.36) and higher CET concentrations (P = .003). The random forest predictive model performed the best, with an AUC of 0.981 (0.963-0.999).

Conclusion: We used an innovative machine learning approach to analyze longitudinal joint drug toxicities, demonstrating their role in predicting patient outcomes through a putative pharmacokinetic mechanism.

在加拿大癌症试验组/AGITG CO.17/20项试验中,早期纵向毒性轨迹的机器学习模型预测西妥昔单抗浓度和转移性结直肠癌的生存。
目的:西妥昔单抗(Cetuximab, CET)靶向表皮生长因子受体,是结直肠癌患者的一种全身治疗选择。CET疗效的一个已知预测因素是CET相关皮疹的存在;其他可能的毒性因素包括疲劳和恶心。对早期CET相关毒性的分析可能揭示临床获益于长期CET治疗的患者亚群。方法:我们分析了CO.20 (ClinicalTrials.gov识别码:NCT00640471)试验组的数据,CET +丙氨酸布里瓦尼(BRIV) (n = 376)和CET +安慰剂(n = 374),以及CO.17 (ClinicalTrials.gov识别码:NCT00079066)试验组的数据,CET +最佳支持治疗[BSC];n = 287)和仅BSC (n = 285)。使用KmL3D(一种机器学习方法)将患者聚类到亚群中,分析治疗0至8周的14个关节纵向毒性轨迹。从治疗开始后8周开始进行具有里程碑意义的生存分析。回归分析评估了亚群与血浆CET浓度之间的关系。开发了三个监督机器学习模型,将CO.20-CET试验组的患者分配到亚群中,然后使用CO.20-CET- briv和CO.17-CET试验组的数据对其进行验证。结果:关节纵向毒性聚类显示出两种高毒性和低毒性聚类,所有含cet的臂显示出一致的毒性轨迹和特征。高毒性集群与男性偏好、转移部位较少、仅结肠原发灶较少和较高的体重指数相关。在CO.20试验样本中,较高的毒性簇与改善的总生存期和无进展生存期结果(调整风险比范围为2.21至4.36)和较高的CET浓度相关(P = 0.003)。随机森林模型预测效果最好,AUC为0.981(0.963 ~ 0.999)。结论:我们使用了一种创新的机器学习方法来分析纵向关节药物毒性,通过假定的药代动力学机制证明它们在预测患者预后方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信