Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Sulaiman Mohammed Alnasser
{"title":"Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications.","authors":"Sulaiman Mohammed Alnasser","doi":"10.1186/s13040-025-00447-8","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"33"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00447-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.

重访遗传毒理学中DNA损伤检测的方法:见解和监管意义。
遗传毒理学对于评估化学品和药物对人类健康和环境的潜在风险至关重要。高通量技术的出现改变了这一领域,为基因毒性检测提供了更有效、更具成本效益和合乎伦理的方法。它利用先进的筛选技术,包括自动体外测定和计算模型,同时快速评估数千种化合物的遗传毒性潜力。这篇综述探讨了传统的体外和体内方法转化为遗传毒性评估的计算模型。通过利用机器学习、人工智能和高通量筛选方面的进步,计算方法正日益取代传统方法。将传统筛选与人工智能(AI)和机器学习(ML)模型相结合,大大增强了它们的预测能力,从而能够识别与分子结构和生物途径相关的遗传毒性特征。监管机构越来越多地支持这些方法作为传统动物模型的人道替代品,只要它们得到验证并显示出强大的预测能力。标准化工作,包括建立跨测试方法的共同终点,对于加强毒理学评估的可比性和促进共识至关重要。像ToxCast这样的项目成功地将HTS数据整合到监管决策中,证明了良好解释的体外结果可以与体内结果一致。测试方法、全球数据共享和实时监测方面的创新不断提高风险评估的准确性和个性化,有望对安全评估和监管框架产生革命性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信