{"title":"Re-Visiting the Intracellular Pathway of Transferrin on Board of a Mathematical Simulation.","authors":"Franco Nieto, Luis S Mayorga","doi":"10.1111/tra.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling and simulation are transforming all fields of biology. Tools like AlphaFold have revolutionized structural biology, while molecular dynamics simulations provide invaluable insights into the behavior of macromolecules in solution or on membranes. In contrast, we lack effective tools to represent the dynamic behavior of the endomembrane system. Static diagrams that connect organelles with arrows are used to depict transport across space and time but fail to specify the underlying mechanisms. This static representation obscures the dynamism of intracellular traffic, freezing it in an immobilized framework. The intracellular transport of transferrin, a key process for cellular iron delivery, is among the best-characterized trafficking pathways. In this commentary, we revisit this process using a mathematical simulation of the endomembrane system. Our model reproduces many experimental observations and highlights the strong contrast between dynamic simulations and static illustrations. This commentary underscores the urgent need for a consensus-based minimal functional working model for the endomembrane system and emphasizes the importance of generating more quantitative experimental data-including precise measurements of organelle size, volume and transport kinetics-practices that were more common among cell biologists in past decades.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"26 4-6","pages":"e70006"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.70006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and simulation are transforming all fields of biology. Tools like AlphaFold have revolutionized structural biology, while molecular dynamics simulations provide invaluable insights into the behavior of macromolecules in solution or on membranes. In contrast, we lack effective tools to represent the dynamic behavior of the endomembrane system. Static diagrams that connect organelles with arrows are used to depict transport across space and time but fail to specify the underlying mechanisms. This static representation obscures the dynamism of intracellular traffic, freezing it in an immobilized framework. The intracellular transport of transferrin, a key process for cellular iron delivery, is among the best-characterized trafficking pathways. In this commentary, we revisit this process using a mathematical simulation of the endomembrane system. Our model reproduces many experimental observations and highlights the strong contrast between dynamic simulations and static illustrations. This commentary underscores the urgent need for a consensus-based minimal functional working model for the endomembrane system and emphasizes the importance of generating more quantitative experimental data-including precise measurements of organelle size, volume and transport kinetics-practices that were more common among cell biologists in past decades.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.