Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2025-07-01 Epub Date: 2025-04-23 DOI:10.1152/physiolgenomics.00133.2024
Marissa A Lopez-Pier, Vito A Marino, Andrea C Vazquez-Loreto, Rinku S Skaria, Danielle K Cannon, Christina H Hoyer-Kimura, Alice E Solomon, Yulia Lipovka, Kevin Doubleday, Maricela Pier, Meinsung Chu, Rachel Mayfield, Samantha M Behunin, Tianjing Hu, Paul R Langlais, Timothy A McKinsey, John P Konhilas
{"title":"Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure.","authors":"Marissa A Lopez-Pier, Vito A Marino, Andrea C Vazquez-Loreto, Rinku S Skaria, Danielle K Cannon, Christina H Hoyer-Kimura, Alice E Solomon, Yulia Lipovka, Kevin Doubleday, Maricela Pier, Meinsung Chu, Rachel Mayfield, Samantha M Behunin, Tianjing Hu, Paul R Langlais, Timothy A McKinsey, John P Konhilas","doi":"10.1152/physiolgenomics.00133.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.<b>NEW & NOTEWORTHY</b> Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"409-430"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00133.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.

在化学诱导的加速卵巢衰竭小鼠模型中,心肌转录组学和蛋白质组学景观贯穿绝经连续体。
妇女患心血管疾病(CVD)的风险随着绝经期的过渡而增加。使用化学模型(4-乙烯基环己烯二氧化物;VCD)加速卵巢功能衰竭,我们之前证明更年期女性比绝经前后的女性更容易患心血管疾病。然而,在绝经前至绝经期至绝经期期间CVD易感性转变背后的细胞和分子机制仍未得到充分研究。在这项利用VCD小鼠模型的工作中,我们对心脏在每个激素不同阶段的细胞和分子特征进行了表型分析,包括转录组学、蛋白质组学和细胞生物学分析。绝经前心脏的转录谱与围绝经期和绝经期心脏的转录谱不同,围绝经期和绝经期心脏的转录谱更相似。蛋白质组学还揭示了激素聚类;与绝经期心脏相比,围绝经期心脏与绝经前心脏更接近。在绝经前、围绝经期和绝经期小鼠心脏中,蛋白质组和转录组都显示出与动脉粥样硬化血栓形成、收缩性和核信号受损相关的基因的相似趋势。进一步的翻译后修饰分析显示,磷酸化蛋白质组和乙酰基组发生了激素依赖性的变化。为了进一步探究这些发现,我们使用血管紧张素II (Ang II)触发病理性重塑。发现amp活化蛋白激酶(AMPK)信号的磷酸化和组蛋白去乙酰化酶(HDAC)活性依赖于激素状态和Ang II刺激。最后,抗炎调节性T细胞(Treg)的下调加重了Ang ii依赖性纤维化,这可能与hdac介导的Treg活性的表观遗传抑制有关。综上所述,我们证明了绝经前、绝经期和绝经期小鼠心脏表型的独特细胞和分子特征,支持了在激素过渡期间研究雌性心血管疾病的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信